These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 26950756)
1. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei. Devarapalli M; Atiyeh HK; Phillips JR; Lewis RS; Huhnke RL Bioresour Technol; 2016 Jun; 209():56-65. PubMed ID: 26950756 [TBL] [Abstract][Full Text] [Related]
2. Continuous conversion of CO Riegler P; Bieringer E; Chrusciel T; Stärz M; Löwe H; Weuster-Botz D Bioresour Technol; 2019 Nov; 291():121760. PubMed ID: 31352165 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous Formate and Syngas Conversion Boosts Growth and Product Formation by Schwarz I; Angelina A; Hambrock P; Weuster-Botz D Molecules; 2024 Jun; 29(11):. PubMed ID: 38893534 [TBL] [Abstract][Full Text] [Related]
4. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Abubackar HN; Veiga MC; Kennes C Bioresour Technol; 2015 Jun; 186():122-127. PubMed ID: 25812815 [TBL] [Abstract][Full Text] [Related]
5. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans. Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C Appl Microbiol Biotechnol; 2016 Apr; 100(7):3361-70. PubMed ID: 26810079 [TBL] [Abstract][Full Text] [Related]
6. Acetic acid, growth rate, and mass transfer govern shifts in CO metabolism of Clostridium autoethanogenum. Elisiário MP; Van Hecke W; De Wever H; Noorman H; Straathof AJJ Appl Microbiol Biotechnol; 2023 Sep; 107(17):5329-5340. PubMed ID: 37410136 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of acetate productivity in a thermophilic (55 °C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H Wang YQ; Yu SJ; Zhang F; Xia XY; Zeng RJ Appl Microbiol Biotechnol; 2017 Mar; 101(6):2619-2627. PubMed ID: 28110397 [TBL] [Abstract][Full Text] [Related]
8. Traits of selected Clostridium strains for syngas fermentation to ethanol. Martin ME; Richter H; Saha S; Angenent LT Biotechnol Bioeng; 2016 Mar; 113(3):531-9. PubMed ID: 26331212 [TBL] [Abstract][Full Text] [Related]
9. Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by "Clostridium ragsdalei". Kundiyana DK; Wilkins MR; Maddipati P; Huhnke RL Bioresour Technol; 2011 May; 102(10):5794-9. PubMed ID: 21377362 [TBL] [Abstract][Full Text] [Related]
10. Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens. Valgepea K; de Souza Pinto Lemgruber R; Meaghan K; Palfreyman RW; Abdalla T; Heijstra BD; Behrendorff JB; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E Cell Syst; 2017 May; 4(5):505-515.e5. PubMed ID: 28527885 [TBL] [Abstract][Full Text] [Related]
11. A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system. Xu H; Liang C; Yuan Z; Xu J; Hua Q; Guo Y Enzyme Microb Technol; 2017 Jun; 101():24-29. PubMed ID: 28433187 [TBL] [Abstract][Full Text] [Related]
12. Removal of headspace CO2 increases biological hydrogen production. Park W; Hyun SH; Oh SE; Logan BE; Kim IS Environ Sci Technol; 2005 Jun; 39(12):4416-20. PubMed ID: 16047775 [TBL] [Abstract][Full Text] [Related]
13. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. Kim YK; Lee H Bioresour Technol; 2016 Mar; 204():139-144. PubMed ID: 26773957 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Kim YK; Park SE; Lee H; Yun JY Bioresour Technol; 2014 May; 159():446-50. PubMed ID: 24703605 [TBL] [Abstract][Full Text] [Related]
15. Expression of amplified synthetic ethanol pathway integrated using Tn7-tool and powered at the expense of eliminated pta, ack, spo0A and spo0J during continuous syngas or CO2 /H2 blend fermentation. Kiriukhin M; Tyurin M J Appl Microbiol; 2013 Apr; 114(4):1033-45. PubMed ID: 23289641 [TBL] [Abstract][Full Text] [Related]
16. Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques. Phillips JR; Atiyeh HK; Tanner RS; Torres JR; Saxena J; Wilkins MR; Huhnke RL Bioresour Technol; 2015 Aug; 190():114-21. PubMed ID: 25935391 [TBL] [Abstract][Full Text] [Related]
17. Enhanced ethanol production by Clostridium ragsdalei from syngas by incorporating biochar in the fermentation medium. Sun X; Atiyeh HK; Kumar A; Zhang H Bioresour Technol; 2018 Jan; 247():291-301. PubMed ID: 28950138 [TBL] [Abstract][Full Text] [Related]
18. Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei. Gao J; Atiyeh HK; Phillips JR; Wilkins MR; Huhnke RL Bioresour Technol; 2013 Nov; 147():508-515. PubMed ID: 24012846 [TBL] [Abstract][Full Text] [Related]
19. Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the solventogenic acetogen "Clostridium ragsdalei". Isom CE; Nanny MA; Tanner RS J Ind Microbiol Biotechnol; 2015 Jan; 42(1):29-38. PubMed ID: 25410829 [TBL] [Abstract][Full Text] [Related]
20. Online monitoring of gas transfer rates during CO and CO/H Mann M; Hüser A; Schick B; Dinger R; Miebach K; Büchs J Biotechnol Bioeng; 2021 May; 118(5):2092-2104. PubMed ID: 33620084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]