BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26950759)

  • 1. Phosphorylation or Mutation of the ERK2 Activation Loop Alters Oligonucleotide Binding.
    McReynolds AC; Karra AS; Li Y; Lopez ED; Turjanski AG; Dioum E; Lorenz K; Zaganjor E; Stippec S; McGlynn K; Earnest S; Cobb MH
    Biochemistry; 2016 Mar; 55(12):1909-17. PubMed ID: 26950759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
    Bardwell AJ; Abdollahi M; Bardwell L
    Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2.
    Eblen ST; Catling AD; Assanah MC; Weber MJ
    Mol Cell Biol; 2001 Jan; 21(1):249-59. PubMed ID: 11113199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local destabilization, rigid body, and fuzzy docking facilitate the phosphorylation of the transcription factor Ets-1 by the mitogen-activated protein kinase ERK2.
    Piserchio A; Warthaka M; Kaoud TS; Callaway K; Dalby KN; Ghose R
    Proc Natl Acad Sci U S A; 2017 Aug; 114(31):E6287-E6296. PubMed ID: 28716922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nurr1 is phosphorylated by ERK2 in vitro and its phosphorylation upregulates tyrosine hydroxylase expression in SH-SY5Y cells.
    Zhang T; Jia N; Fei E; Wang P; Liao Z; Ding L; Yan M; Nukina N; Zhou J; Wang G
    Neurosci Lett; 2007 Aug; 423(2):118-22. PubMed ID: 17681692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP.
    Pettiford SM; Herbst R
    Oncogene; 2000 Feb; 19(7):858-69. PubMed ID: 10702794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3.
    Carlson SM; Chouinard CR; Labadorf A; Lam CJ; Schmelzle K; Fraenkel E; White FM
    Sci Signal; 2011 Oct; 4(196):rs11. PubMed ID: 22028470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MEK1 and MEK2 regulate distinct functions by sorting ERK2 to different intracellular compartments.
    Skarpen E; Flinder LI; Rosseland CM; Orstavik S; Wierød L; Oksvold MP; Skålhegg BS; Huitfeldt HS
    FASEB J; 2008 Feb; 22(2):466-76. PubMed ID: 17928366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Studies of ERK2 Protein Complexes.
    Weijman JF; Riedl SJ; Mace PD
    Methods Mol Biol; 2017; 1487():53-63. PubMed ID: 27924558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs.
    Eblen ST; Kumar NV; Shah K; Henderson MJ; Watts CK; Shokat KM; Weber MJ
    J Biol Chem; 2003 Apr; 278(17):14926-35. PubMed ID: 12594221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interleukin-2 activation of STAT5 requires the convergent action of tyrosine kinases and a serine/threonine kinase pathway distinct from the Raf1/ERK2 MAP kinase pathway.
    Beadling C; Ng J; Babbage JW; Cantrell DA
    EMBO J; 1996 Apr; 15(8):1902-13. PubMed ID: 8617237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of non-phosphorylated activation loop residues in determining ERK2 dephosphorylation, activity, and subcellular localization.
    Bendetz-Nezer S; Seger R
    J Biol Chem; 2007 Aug; 282(34):25114-22. PubMed ID: 17597065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of DCC by ERK2 is facilitated by direct docking of the receptor P1 domain to the kinase.
    Ma W; Shang Y; Wei Z; Wen W; Wang W; Zhang M
    Structure; 2010 Nov; 18(11):1502-11. PubMed ID: 21070949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1- and 2-mediated phosphorylation of serine 105 in cardiomyocytes.
    Liang Q; Wiese RJ; Bueno OF; Dai YS; Markham BE; Molkentin JD
    Mol Cell Biol; 2001 Nov; 21(21):7460-9. PubMed ID: 11585926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ERK1 and ERK2 kinases activate hydroxyurea-induced S-phase checkpoint in MCF7 cells by mediating ATR activation.
    Wei F; Xie Y; He L; Tao L; Tang D
    Cell Signal; 2011 Jan; 23(1):259-68. PubMed ID: 20840867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation.
    Molina DM; Grewal S; Bardwell L
    J Biol Chem; 2005 Dec; 280(51):42051-60. PubMed ID: 16246839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and molecular analysis of the interaction between ERK2 MAP kinase and hypoxia inducible factor-1α.
    Karapetsas A; Giannakakis A; Pavlaki M; Panayiotidis M; Sandaltzopoulos R; Galanis A
    Int J Biochem Cell Biol; 2011 Nov; 43(11):1582-90. PubMed ID: 21807114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both ERK1 and ERK2 kinases promote G2/M arrest in etoposide-treated MCF7 cells by facilitating ATM activation.
    Wei F; Xie Y; Tao L; Tang D
    Cell Signal; 2010 Nov; 22(11):1783-9. PubMed ID: 20637859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of human mono-phosphorylated ERK1 at Tyr204.
    Kinoshita T; Yoshida I; Nakae S; Okita K; Gouda M; Matsubara M; Yokota K; Ishiguro H; Tada T
    Biochem Biophys Res Commun; 2008 Dec; 377(4):1123-7. PubMed ID: 18983981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding the repertoire of an ERK2 recruitment site: cysteine footprinting identifies the D-recruitment site as a mediator of Ets-1 binding.
    Abramczyk O; Rainey MA; Barnes R; Martin L; Dalby KN
    Biochemistry; 2007 Aug; 46(32):9174-86. PubMed ID: 17658891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.