BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26950795)

  • 1. Ecological changes in oral microcosm biofilm during maturation.
    Kim YS; Kang SM; Lee ES; Lee JH; Kim BR; Kim BI
    J Biomed Opt; 2016 Oct; 21(10):101409. PubMed ID: 26950795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring the maturation process of a dental microcosm biofilm using the Quantitative Light-induced Fluorescence-Digital (QLF-D).
    Kim YS; Lee ES; Kwon HK; Kim BI
    J Dent; 2014 Jun; 42(6):691-6. PubMed ID: 24657554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red fluorescence of dental biofilm as an indicator for assessing the efficacy of antimicrobials.
    Lee ES; de Josselin de Jong E; Jung HI; Kim BI
    J Biomed Opt; 2018 Jan; 23(1):1-6. PubMed ID: 29318813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association between the cariogenicity of a dental microcosm biofilm and its red fluorescence detected by Quantitative Light-induced Fluorescence-Digital (QLF-D).
    Lee ES; Kang SM; Ko HY; Kwon HK; Kim BI
    J Dent; 2013 Dec; 41(12):1264-70. PubMed ID: 24012520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of human dental plaque microcosm biofilms grown in an undefined medium and a chemically defined artificial saliva.
    Wong L; Sissons C
    Arch Oral Biol; 2001 Jun; 46(6):477-86. PubMed ID: 11311195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saliva-derived microcosm biofilms grown on different oral surfaces in vitro.
    Li X; Shang L; Brandt BW; Buijs MJ; Roffel S; van Loveren C; Crielaard W; Gibbs S; Deng DM
    NPJ Biofilms Microbiomes; 2021 Sep; 7(1):74. PubMed ID: 34504090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics.
    Lam RH; Cui X; Guo W; Thorsen T
    Lab Chip; 2016 Apr; 16(9):1652-62. PubMed ID: 27045372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between static and semi-dynamic models for microcosm biofilm formation on dentin.
    Santos DMSD; Pires JG; Braga AS; Salomão PMA; Magalhães AC
    J Appl Oral Sci; 2019 Jan; 27():e20180163. PubMed ID: 30624468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in bacterial DGGE patterns from human saliva: over time, between individuals and in corresponding dental plaque microcosms.
    Rasiah IA; Wong L; Anderson SA; Sissons CH
    Arch Oral Biol; 2005 Sep; 50(9):779-87. PubMed ID: 15970209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial Effects of Non-Thermal Atmospheric Pressure Plasma on Oral Microcosm Biofilms.
    Lee J; Cho S; Kim HE
    Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted profiling of oral bacteria in human saliva and in vitro biofilms with quantitative real-time PCR.
    Price RR; Viscount HB; Stanley MC; Leung KP
    Biofouling; 2007; 23(3-4):203-13. PubMed ID: 17653931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual microflora beget unique oral microcosms.
    Ledder RG; Gilbert P; Pluen A; Sreenivasan PK; De Vizio W; McBain AJ
    J Appl Microbiol; 2006 May; 100(5):1123-31. PubMed ID: 16630013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caries-related plaque microcosm biofilms developed in microplates.
    Filoche SK; Soma KJ; Sissons CH
    Oral Microbiol Immunol; 2007 Apr; 22(2):73-9. PubMed ID: 17311629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of different substrates/growth media on microbial community of saliva-derived biofilm.
    Li B; Zhou X; Zhou X; Wu P; Li M; Feng M; Peng X; Ren B; Cheng L
    FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28854684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saliva and tooth biofilm bacterial microbiota in adolescents in a low caries community.
    Eriksson L; Lif Holgerson P; Johansson I
    Sci Rep; 2017 Jul; 7(1):5861. PubMed ID: 28724921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perpetuation of subgingival biofilms in an in vitro model.
    Shaddox LM; Alfant B; Tobler J; Walker C
    Mol Oral Microbiol; 2010 Feb; 25(1):81-7. PubMed ID: 20331796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and pyrosequencing analysis of an in-vitro oral biofilm model.
    Kistler JO; Pesaro M; Wade WG
    BMC Microbiol; 2015 Feb; 15():24. PubMed ID: 25880819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies.
    Maske TT; Brauner KV; Nakanishi L; Arthur RA; van de Sande FH; Cenci MS
    Biofouling; 2016; 32(3):339-48. PubMed ID: 26905384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-reported bovine milk intake is associated with oral microbiota composition.
    Johansson I; Esberg A; Eriksson L; Haworth S; Lif Holgerson P
    PLoS One; 2018; 13(3):e0193504. PubMed ID: 29561863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red and Green Fluorescence from Oral Biofilms.
    Volgenant CM; Hoogenkamp MA; Krom BP; Janus MM; Ten Cate JM; de Soet JJ; Crielaard W; van der Veen MH
    PLoS One; 2016; 11(12):e0168428. PubMed ID: 27997567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.