These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26950936)

  • 1. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?
    Salari V; Scholkmann F; Bokkon I; Shahbazi F; Tuszynski J
    PLoS One; 2016; 11(3):e0148336. PubMed ID: 26950936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinal phosphenes and discrete dark noises in rods: a new biophysical framework.
    Bókkon I; Vimal RL
    J Photochem Photobiol B; 2009 Sep; 96(3):255-9. PubMed ID: 19643631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein fluctuations as the possible origin of the thermal activation of rod photoreceptors in the dark.
    Lórenz-Fonfría VA; Furutani Y; Ota T; Ido K; Kandori H
    J Am Chem Soc; 2010 Apr; 132(16):5693-703. PubMed ID: 20356096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biophotons Contribute to Retinal Dark Noise.
    Li Z; Dai J
    Neurosci Bull; 2016 Jun; 32(3):246-52. PubMed ID: 27059222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraweak photon emission in the brain.
    Salari V; Valian H; Bassereh H; Bókkon I; Barkhordari A
    J Integr Neurosci; 2015 Sep; 14(3):419-29. PubMed ID: 26336891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rejection of the biophoton hypothesis on the origin of photoreceptor dark noise.
    Govardovskii VI; Astakhova LA; Rotov AY; Firsov ML
    J Gen Physiol; 2019 Jul; 151(7):887-897. PubMed ID: 30992369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromophore switch from 11-cis-dehydroretinal (A2) to 11-cis-retinal (A1) decreases dark noise in salamander red rods.
    Ala-Laurila P; Donner K; Crouch RK; Cornwall MC
    J Physiol; 2007 Nov; 585(Pt 1):57-74. PubMed ID: 17884920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism of spontaneous pigment activation in retinal cones.
    Sampath AP; Baylor DA
    Biophys J; 2002 Jul; 83(1):184-93. PubMed ID: 12080111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal activation and photoactivation of visual pigments.
    Ala-Laurila P; Donner K; Koskelainen A
    Biophys J; 2004 Jun; 86(6):3653-62. PubMed ID: 15189862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors.
    Astakhova LA; Nikolaeva DA; Fedotkina TV; Govardovskii VI; Firsov ML
    J Gen Physiol; 2017 Jul; 149(7):689-701. PubMed ID: 28611079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The limit of photoreceptor sensitivity: molecular mechanisms of dark noise in retinal cones.
    Holcman D; Korenbrot JI
    J Gen Physiol; 2005 Jun; 125(6):641-60. PubMed ID: 15928405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of visual pigments by light and heat.
    Luo DG; Yue WW; Ala-Laurila P; Yau KW
    Science; 2011 Jun; 332(6035):1307-12. PubMed ID: 21659602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a color filter used in auriculomedicine on ultraweak photon emission of the human body.
    van Wijk R; Ackerman JM; van Wijk EP
    J Altern Complement Med; 2006 Dec; 12(10):955-62. PubMed ID: 17212567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous and visible light-induced ultraweak photon emission from rat eyes.
    Wang C; Bókkon I; Dai J; Antal I
    Brain Res; 2011 Jan; 1369():1-9. PubMed ID: 21034725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous ultraweak photon emission from biological systems and the endogenous light field.
    Schwabl H; Klima H
    Forsch Komplementarmed Klass Naturheilkd; 2005 Apr; 12(2):84-9. PubMed ID: 15947466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraweak Photon Emission from the Seed Coat in Response to Temperature and Humidity-A Potential Mechanism for Environmental Signal Transduction in the Soil Seed Bank.
    Footitt S; Palleschi S; Fazio E; Palomba R; Finch-Savage WE; Silvestroni L
    Photochem Photobiol; 2016 Sep; 92(5):678-87. PubMed ID: 27389858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous activation of visual pigments in relation to openness/closedness of chromophore-binding pocket.
    Yue WW; Frederiksen R; Ren X; Luo DG; Yamashita T; Shichida Y; Cornwall MC; Yau KW
    Elife; 2017 Feb; 6():. PubMed ID: 28186874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the molecular origin of photoreceptor noise.
    Barlow RB; Birge RR; Kaplan E; Tallent JR
    Nature; 1993 Nov; 366(6450):64-6. PubMed ID: 8232538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence.
    Salari V; Scholkmann F; Vimal RLP; Császár N; Aslani M; Bókkon I
    Prog Retin Eye Res; 2017 Sep; 60():101-119. PubMed ID: 28729002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
    Johnson JE; Perkins GA; Giddabasappa A; Chaney S; Xiao W; White AD; Brown JM; Waggoner J; Ellisman MH; Fox DA
    Mol Vis; 2007 Jun; 13():887-919. PubMed ID: 17653034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.