BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 26951224)

  • 1. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine.
    Park JH; Chon HT
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):11814-22. PubMed ID: 26951224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy.
    Rizvi A; Ahmed B; Zaidi A; Khan MS
    Environ Monit Assess; 2020 Dec; 192(12):801. PubMed ID: 33263175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils.
    Jin Z; Deng S; Wen Y; Jin Y; Pan L; Zhang Y; Black T; Jones KC; Zhang H; Zhang D
    Sci Total Environ; 2019 Dec; 697():134148. PubMed ID: 31479903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils.
    Deng Z; Zhang R; Shi Y; Hu L; Tan H; Cao L
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):2346-2357. PubMed ID: 24062066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit.
    Markiewicz-Patkowska J; Hursthouse A; Przybyla-Kij H
    Environ Int; 2005 May; 31(4):513-21. PubMed ID: 15788192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biosorption of Cd(II), Cu(II), Pb(II) and Zn(II) in aqueous solutions by fruiting bodies of macrofungi (Auricularia polytricha and Tremella fuciformis)].
    Mo Y; Pan R; Huang HW; Cao LX; Zhang RD
    Huan Jing Ke Xue; 2010 Jul; 31(7):1566-74. PubMed ID: 20825027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A meta-analysis of metal biosorption by suspended bacteria from three phyla.
    Fathollahi A; Khasteganan N; Coupe SJ; Newman AP
    Chemosphere; 2021 Apr; 268():129290. PubMed ID: 33383280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Cd
    Xu S; Xing Y; Liu S; Hao X; Chen W; Huang Q
    Chemosphere; 2020 Feb; 240():124893. PubMed ID: 31550585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.).
    Kim SU; Cheong YH; Seo DC; Hur JS; Heo JS; Cho JS
    Water Sci Technol; 2007; 55(1-2):105-11. PubMed ID: 17305129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19.
    Pan R; Cao L; Zhang R
    J Hazard Mater; 2009 Nov; 171(1-3):761-6. PubMed ID: 19592158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora.
    Albert Q; Leleyter L; Lemoine M; Heutte N; Rioult JP; Sage L; Baraud F; Garon D
    Chemosphere; 2018 Apr; 196():386-392. PubMed ID: 29316464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal ions removed from imitating acid mine drainages with a thermoacidophilic archaea: Acidianus manzaensis YN25.
    Li M; Huang Y; Yang Y; Wang H; Hu L; Zhong H; He Z
    Ecotoxicol Environ Saf; 2020 Mar; 190():110084. PubMed ID: 31869713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils.
    Li D; Li R; Ding Z; Ruan X; Luo J; Chen J; Zheng J; Tang J
    Chemosphere; 2020 Feb; 241():125039. PubMed ID: 31606568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremoval of heavy metals from aqueous solution using dead biomass of indigenous fungi derived from fertilizer industry effluents: isotherm models evaluation and batch optimization.
    El-Gendy MMAA; Abdel-Moniem SM; Ammar NS; El-Bondkly AMA
    Biometals; 2023 Dec; 36(6):1307-1329. PubMed ID: 37428423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation.
    Zhao Y; Yao J; Yuan Z; Wang T; Zhang Y; Wang F
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):372-380. PubMed ID: 27722882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective removal of Cd
    Devanesan S; AlSalhi MS
    Chemosphere; 2021 Aug; 277():130230. PubMed ID: 34384169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk).
    Saeed A; Iqbal M; Akhtar MW
    J Hazard Mater; 2005 Jan; 117(1):65-73. PubMed ID: 15621354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.