BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26951339)

  • 1. Effects and optimization of the use of biochar in anaerobic digestion of food wastes.
    Cai J; He P; Wang Y; Shao L; Lü F
    Waste Manag Res; 2016 May; 34(5):409-16. PubMed ID: 26951339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms.
    Wang G; Li Q; Gao X; Wang XC
    Bioresour Technol; 2018 Feb; 250():812-820. PubMed ID: 30001588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response surface optimization of methane potentials in anaerobic co-digestion of multiple substrates: dairy, chicken manure and wheat straw.
    Wang X; Yang G; Li F; Feng Y; Ren G
    Waste Manag Res; 2013 Jan; 31(1):60-6. PubMed ID: 23188713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste.
    Sunyoto NMS; Zhu M; Zhang Z; Zhang D
    Bioresour Technol; 2016 Nov; 219():29-36. PubMed ID: 27474855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of the labile organic fraction in food waste and the substrate/inoculum ratio on anaerobic digestion for a reliable methane yield.
    Kawai M; Nagao N; Tajima N; Niwa C; Matsuyama T; Toda T
    Bioresour Technol; 2014 Apr; 157():174-80. PubMed ID: 24556370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes.
    Luo C; Lü F; Shao L; He P
    Water Res; 2015 Jan; 68():710-18. PubMed ID: 25462775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the anaerobic co-digestion of pasteurized slaughterhouse waste, pig slurry and glycerine.
    Rodríguez-Abalde Á; Flotats X; Fernández B
    Waste Manag; 2017 Mar; 61():521-528. PubMed ID: 28024897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina.
    Lü F; Luo C; Shao L; He P
    Water Res; 2016 Mar; 90():34-43. PubMed ID: 26724437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion.
    Lukitawesa ; Patinvoh RJ; Millati R; Sárvári-Horváth I; Taherzadeh MJ
    Bioengineered; 2020 Dec; 11(1):39-52. PubMed ID: 31880192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of biochar from crop residues and its application for anaerobic digestion.
    Hoang AT; Goldfarb JL; Foley AM; Lichtfouse E; Kumar M; Xiao L; Ahmed SF; Said Z; Luque R; Bui VG; Nguyen XP
    Bioresour Technol; 2022 Nov; 363():127970. PubMed ID: 36122843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochar enabled syntrophic action: Solid state anaerobic digestion of agricultural stubble for enhanced methane production.
    Paritosh K; Vivekanand V
    Bioresour Technol; 2019 Oct; 289():121712. PubMed ID: 31272803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of inoculum source and co-digestion strategies on anaerobic digestion of residues generated in the treatment of waste vegetable oils.
    Hidalgo D; Martín-Marroquín JM
    J Environ Manage; 2014 Sep; 142():17-22. PubMed ID: 24794521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eco-compatible biochar mitigates volatile fatty acids stress in high load thermophilic solid-state anaerobic reactors treating agricultural waste.
    Meng L; Xie L; Suenaga T; Riya S; Terada A; Hosomi M
    Bioresour Technol; 2020 Aug; 309():123366. PubMed ID: 32305851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion.
    Fagbohungbe MO; Herbert BM; Hurst L; Ibeto CN; Li H; Usmani SQ; Semple KT
    Waste Manag; 2017 Mar; 61():236-249. PubMed ID: 27923546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced volatile fatty acid degradation and methane production efficiency by biochar addition in food waste-sludge co-digestion: A step towards increased organic loading efficiency in co-digestion.
    Kaur G; Johnravindar D; Wong JWC
    Bioresour Technol; 2020 Jul; 308():123250. PubMed ID: 32244132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications.
    Luo K; Pang Y; Yang Q; Wang D; Li X; Lei M; Huang Q
    Environ Sci Pollut Res Int; 2019 May; 26(14):13984-13998. PubMed ID: 30900121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic batch co-digestion of sisal pulp and fish wastes.
    Mshandete A; Kivaisi A; Rubindamayugi M; Mattiasson B
    Bioresour Technol; 2004 Oct; 95(1):19-24. PubMed ID: 15207289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure.
    Zhai N; Zhang T; Yin D; Yang G; Wang X; Ren G; Feng Y
    Waste Manag; 2015 Apr; 38():126-31. PubMed ID: 25623001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochar amendment rapidly shifts microbial community structure with enhanced thermophilic digestion activity.
    Khoei S; Stokes A; Kieft B; Kadota P; Hallam SJ; Eskicioglu C
    Bioresour Technol; 2021 Dec; 341():125864. PubMed ID: 34523581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops.
    Brulé M; Bolduan R; Seidelt S; Schlagermann P; Bott A
    Environ Technol; 2013; 34(13-16):2047-58. PubMed ID: 24350458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.