BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26951342)

  • 1. Leaching of valuable elements from thermal power plant bottom ash using a thermo-hydrometallurgical process.
    Bojinova D; Teodosieva R
    Waste Manag Res; 2016 Jun; 34(6):511-7. PubMed ID: 26951342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous recovery of vanadium and nickel from power plant fly-ash: optimization of parameters using response surface methodology.
    Nazari E; Rashchi F; Saba M; Mirazimi SM
    Waste Manag; 2014 Dec; 34(12):2687-96. PubMed ID: 25269818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined ultrasonic and bioleaching treatment of hospital waste incinerator bottom ash with simultaneous extraction of selected metals.
    Anjum F; Shahid M; Bukhari S; Potgieter JH
    Environ Technol; 2014; 35(1-4):262-70. PubMed ID: 24600864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of isosaccharinic acid (ISA) on the mobilization of metals in municipal solid waste incineration (MSWI) dry scrubber residue.
    Svensson M; Berg M; Ifwer K; Sjöblom R; Ecke H
    J Hazard Mater; 2007 Jun; 144(1-2):477-84. PubMed ID: 17118536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods.
    Rasoulnia P; Mousavi SM; Rastegar SO; Azargoshasb H
    Waste Manag; 2016 Jun; 52():309-17. PubMed ID: 27095291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching.
    Funari V; Mäkinen J; Salminen J; Braga R; Dinelli E; Revitzer H
    Waste Manag; 2017 Feb; 60():397-406. PubMed ID: 27478021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal treatment of solid waste in view of recycling: Chromate and molybdate formation and leaching behaviour.
    Verbinnen B; Billen P; Vandecasteele C
    Waste Manag Res; 2014 Jun; 32(6):536-42. PubMed ID: 24794032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes.
    Buzatu T; Popescu G; Birloaga I; Săceanu S
    Waste Manag; 2013 Mar; 33(3):699-705. PubMed ID: 23158875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash.
    Kuboňová L; Langová Š; Nowak B; Winter F
    Waste Manag; 2013 Nov; 33(11):2322-7. PubMed ID: 23809619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaching kinetics of bottom ash waste as a source of calcium ions.
    Koech L; Everson R; Neomagus H; Rutto H
    J Air Waste Manag Assoc; 2015 Feb; 65(2):126-32. PubMed ID: 25947048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects for cleaning ash in the acidic effluent from bioleaching of sulfidic concentrates.
    Paul M; Sandström A; Paul J
    J Hazard Mater; 2004 Jan; 106(1):25-35. PubMed ID: 14693436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.
    Oustadakis P; Tsakiridis PE; Katsiapi A; Agatzini-Leonardou S
    J Hazard Mater; 2010 Jul; 179(1-3):1-7. PubMed ID: 20129730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automobile shredded residue valorisation by hydrometallurgical metal recovery.
    Granata G; Moscardini E; Furlani G; Pagnanelli F; Toro L
    J Hazard Mater; 2011 Jan; 185(1):44-8. PubMed ID: 21051141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential Risk by Disposal of Bottom Ash from Thermal Power Plants and Minimization by Addition of NaHCO
    Singh G; Kumar S; Mohapatra SK
    Bull Environ Contam Toxicol; 2018 Dec; 101(6):773-778. PubMed ID: 30386893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of trace elements leaching of coal combustion residues from Bokaro Thermal Power Station.
    Singh G; Kumar R; Kumar P
    J Environ Sci Eng; 2007 Jan; 49(1):77-86. PubMed ID: 18472566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioleaching of fly ash by the tropical marine yeast, Yarrowia lipolytica NCIM 3589.
    Bankar A; Winey M; Prakash D; Kumar AR; Gosavi S; Kapadnis B; Zinjarde S
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2205-17. PubMed ID: 23076571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.
    Kim HI; Park KH; Mishra D
    J Hazard Mater; 2009 Jul; 166(2-3):1540-4. PubMed ID: 19121897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.