BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 26951373)

  • 1. Phylogenetic tree-informed microRNAome analysis uncovers conserved and lineage-specific miRNAs in Camellia during floral organ development.
    Yin H; Fan Z; Li X; Wang J; Liu W; Wu B; Ying Z; Liu L; Liu Z; Li J
    J Exp Bot; 2016 Apr; 67(9):2641-53. PubMed ID: 26951373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences.
    Jeyaraj A; Zhang X; Hou Y; Shangguan M; Gajjeraman P; Li Y; Wei C
    BMC Plant Biol; 2017 Nov; 17(1):212. PubMed ID: 29157210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global gene expression defines faded whorl specification of double flower domestication in Camellia.
    Li X; Li J; Fan Z; Liu Z; Tanaka T; Yin H
    Sci Rep; 2017 Jun; 7(1):3197. PubMed ID: 28600507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and comparative profiling of the small RNA transcriptomes in two phases of flowering in Cymbidium ensifolium.
    Li X; Jin F; Jin L; Jackson A; Ma X; Shu X; Wu D; Jin G
    BMC Genomics; 2015 Aug; 16(1):622. PubMed ID: 26289943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree (
    Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel and conserved microRNAs in soybean floral whorls.
    Kulcheski FR; Molina LG; da Fonseca GC; de Morais GL; de Oliveira LF; Margis R
    Gene; 2016 Jan; 575(2 Pt 1):213-23. PubMed ID: 26341053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress.
    Guo Y; Zhao S; Zhu C; Chang X; Yue C; Wang Z; Lin Y; Lai Z
    BMC Plant Biol; 2017 Nov; 17(1):211. PubMed ID: 29157225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary conservation of microRNA regulatory programs in plant flower development.
    Luo Y; Guo Z; Li L
    Dev Biol; 2013 Aug; 380(2):133-44. PubMed ID: 23707900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea.
    Fan Z; Li J; Li X; Wu B; Wang J; Liu Z; Yin H
    Sci Rep; 2015 May; 5():9729. PubMed ID: 25978548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of miRNAs involved in pear fruit development and quality.
    Wu J; Wang D; Liu Y; Wang L; Qiao X; Zhang S
    BMC Genomics; 2014 Nov; 15(1):953. PubMed ID: 25366381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis.
    Chen J; Zheng Y; Qin L; Wang Y; Chen L; He Y; Fei Z; Lu G
    BMC Plant Biol; 2016 Apr; 16():80. PubMed ID: 27068118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiquity of microRNAs and their targets in land plants.
    Axtell MJ; Bartel DP
    Plant Cell; 2005 Jun; 17(6):1658-73. PubMed ID: 15849273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of miRNAs and Their Target Genes Involved in Cucumber Fruit Expansion Using Small RNA and Degradome Sequencing.
    Sun Y; Luo W; Chang H; Li Z; Zhou J; Li X; Zheng J; Hao M
    Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31547414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomics analysis reveals gene family expansion and changes of expression patterns associated with natural adaptations of flowering time and secondary metabolism in yellow Camellia.
    Li X; Fan Z; Guo H; Ye N; Lyu T; Yang W; Wang J; Wang JT; Wu B; Li J; Yin H
    Funct Integr Genomics; 2018 Nov; 18(6):659-671. PubMed ID: 29948459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of long non-coding RNAs and microRNAs involved in anther development in the tropical Camellia oleifera.
    Kong L; Zhuo Y; Xu J; Meng X; Wang Y; Zhao W; Lai H; Chen J; Wang J
    BMC Genomics; 2022 Aug; 23(1):596. PubMed ID: 35974339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets.
    Wang XJ; Reyes JL; Chua NH; Gaasterland T
    Genome Biol; 2004; 5(9):R65. PubMed ID: 15345049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing.
    Paul S; Kundu A; Pal A
    J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct double flower varieties in Camellia japonica exhibit both expansion and contraction of C-class gene expression.
    Sun Y; Fan Z; Li X; Liu Z; Li J; Yin H
    BMC Plant Biol; 2014 Oct; 14():288. PubMed ID: 25344122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing.
    Luo Y; Zhang X; Luo Z; Zhang Q; Liu J
    BMC Plant Biol; 2015 Jan; 15():11. PubMed ID: 25604351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.