These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

742 related articles for article (PubMed ID: 26951677)

  • 1. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.
    Tjong H; Li W; Kalhor R; Dai C; Hao S; Gong K; Zhou Y; Li H; Zhou XJ; Le Gros MA; Larabell CA; Chen L; Alber F
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1663-72. PubMed ID: 26951677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Producing genome structure populations with the dynamic and automated PGS software.
    Hua N; Tjong H; Shin H; Gong K; Zhou XJ; Alber F
    Nat Protoc; 2018 May; 13(5):915-926. PubMed ID: 29622804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reorganization of chromosome architecture in replicative cellular senescence.
    Criscione SW; De Cecco M; Siranosian B; Zhang Y; Kreiling JA; Sedivy JM; Neretti N
    Sci Adv; 2016 Feb; 2(2):e1500882. PubMed ID: 26989773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
    Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D
    Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle.
    Xie WJ; Meng L; Liu S; Zhang L; Cai X; Gao YQ
    Sci Rep; 2017 Jun; 7(1):2818. PubMed ID: 28588240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities.
    Dai C; Li W; Tjong H; Hao S; Zhou Y; Li Q; Chen L; Zhu B; Alber F; Jasmine Zhou X
    Nat Commun; 2016 May; 7():11549. PubMed ID: 27240697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian inference of chromatin structure ensembles from population-averaged contact data.
    Carstens S; Nilges M; Habeck M
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7824-7830. PubMed ID: 32193349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.
    Di Pierro M; Cheng RR; Lieberman Aiden E; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12126-12131. PubMed ID: 29087948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D genome structure modeling by Lorentzian objective function.
    Trieu T; Cheng J
    Nucleic Acids Res; 2017 Feb; 45(3):1049-1058. PubMed ID: 28180292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional genome structures of single diploid human cells.
    Tan L; Xing D; Chang CH; Li H; Xie XS
    Science; 2018 Aug; 361(6405):924-928. PubMed ID: 30166492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes.
    Abbas A; He X; Niu J; Zhou B; Zhu G; Ma T; Song J; Gao J; Zhang MQ; Zeng J
    Nat Commun; 2019 May; 10(1):2049. PubMed ID: 31053705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interplay between genome organization and nuclear architecture of primate evolutionary neo-centromeres.
    Lomiento M; Grasser F; Rocchi M; Müller S
    Genomics; 2013 Oct; 102(4):288-95. PubMed ID: 23648727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capturing Three-Dimensional Genome Organization in Individual Cells by Single-Cell Hi-C.
    Nagano T; Wingett SW; Fraser P
    Methods Mol Biol; 2017; 1654():79-97. PubMed ID: 28986784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-Driven Polymer Model for Mechanistic Exploration of Diploid Genome Organization.
    Qi Y; Reyes A; Johnstone SE; Aryee MJ; Bernstein BE; Zhang B
    Biophys J; 2020 Nov; 119(9):1905-1916. PubMed ID: 33086041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network analysis identifies chromosome intermingling regions as regulatory hotspots for transcription.
    Belyaeva A; Venkatachalapathy S; Nagarajan M; Shivashankar GV; Uhler C
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13714-13719. PubMed ID: 29229825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling.
    Kalhor R; Tjong H; Jayathilaka N; Alber F; Chen L
    Nat Biotechnol; 2011 Dec; 30(1):90-8. PubMed ID: 22198700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation and comparison of methods for recapitulation of 3D spatial chromatin structures.
    Park J; Lin S
    Brief Bioinform; 2019 Jul; 20(4):1205-1214. PubMed ID: 29091999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of 3D genome structures for comparison of chromosome conformation capture experiments with microscopy: An evaluation of single-cell Hi-C protocols.
    Lando D; Stevens TJ; Basu S; Laue ED
    Nucleus; 2018 Jan; 9(1):190-201. PubMed ID: 29431585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.