These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 26951678)

  • 1. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria.
    Corrigan RM; Bellows LE; Wood A; Gründling A
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1710-9. PubMed ID: 26951678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Stringent Response Inhibits 70S Ribosome Formation in
    Bennison DJ; Nakamoto JA; Craggs TD; Milón P; Rafferty JB; Corrigan RM
    mBio; 2021 Dec; 12(6):e0267921. PubMed ID: 34749534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial physiology: (p)ppGpp target ribosome assembly.
    Nunes-Alves C
    Nat Rev Microbiol; 2016 Apr; 14(5):266. PubMed ID: 26996230
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural basis for (p)ppGpp-mediated inhibition of the GTPase RbgA.
    Pausch P; Steinchen W; Wieland M; Klaus T; Freibert SA; Altegoer F; Wilson DN; Bange G
    J Biol Chem; 2018 Dec; 293(51):19699-19709. PubMed ID: 30366986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of the Stringent Response on TRAFAC GTPases and Prokaryotic Ribosome Assembly.
    Bennison DJ; Irving SE; Corrigan RM
    Cells; 2019 Oct; 8(11):. PubMed ID: 31653044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to save a bacterial ribosome in times of stress.
    Zegarra V; Bedrunka P; Bange G; Czech L
    Semin Cell Dev Biol; 2023 Feb; 136():3-12. PubMed ID: 35331628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis.
    Gaca AO; Kudrin P; Colomer-Winter C; Beljantseva J; Liu K; Anderson B; Wang JD; Rejman D; Potrykus K; Cashel M; Hauryliuk V; Lemos JA
    J Bacteriol; 2015 Sep; 197(18):2908-19. PubMed ID: 26124242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel (p)ppGpp Binding and Metabolizing Proteins of
    Zhang Y; Zborníková E; Rejman D; Gerdes K
    mBio; 2018 Mar; 9(2):. PubMed ID: 29511080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response.
    Gaca AO; Kajfasz JK; Miller JH; Liu K; Wang JD; Abranches J; Lemos JA
    mBio; 2013 Sep; 4(5):e00646-13. PubMed ID: 24065631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical characterization of ribosome assembly GTPase RbgA in Bacillus subtilis.
    Achila D; Gulati M; Jain N; Britton RA
    J Biol Chem; 2012 Mar; 287(11):8417-23. PubMed ID: 22267738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus.
    Kasai K; Nishizawa T; Takahashi K; Hosaka T; Aoki H; Ochi K
    J Bacteriol; 2006 Oct; 188(20):7111-22. PubMed ID: 17015650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The (p)ppGpp-binding GTPase Era promotes rRNA processing and cold adaptation in Staphylococcus aureus.
    Wood A; Irving SE; Bennison DJ; Corrigan RM
    PLoS Genet; 2019 Aug; 15(8):e1008346. PubMed ID: 31465450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the ribosome assembly GTPase RbgA provides insight into ribosome interaction and ribosome-stimulated GTPase activation.
    Gulati M; Jain N; Anand B; Prakash B; Britton RA
    Nucleic Acids Res; 2013 Mar; 41(5):3217-27. PubMed ID: 23325847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disassembly of the
    Basu A; Yap MN
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):E8165-E8173. PubMed ID: 28894000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional insights into the mode of action of a universally conserved Obg GTPase.
    Feng B; Mandava CS; Guo Q; Wang J; Cao W; Li N; Zhang Y; Zhang Y; Wang Z; Wu J; Sanyal S; Lei J; Gao N
    PLoS Biol; 2014 May; 12(5):e1001866. PubMed ID: 24844575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrofurantoin prompts the stringent response in Bacillus subtilis.
    Lopez JM; Fortnagel P
    J Gen Microbiol; 1981 Oct; 126(2):491-6. PubMed ID: 6175725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the control of development. Accumulation of guanosine tetraphosphate and pentaphosphate in response to inhibition of protein synthesis in Bacillus subtilis.
    Rhaese HJ; Dichtelmüller H; Grade R
    Eur J Biochem; 1975 Aug; 56(2):385-92. PubMed ID: 809277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel GTPase activated by the small subunit of ribosome.
    Himeno H; Hanawa-Suetsugu K; Kimura T; Takagi K; Sugiyama W; Shirata S; Mikami T; Odagiri F; Osanai Y; Watanabe D; Goto S; Kalachnyuk L; Ushida C; Muto A
    Nucleic Acids Res; 2004; 32(17):5303-9. PubMed ID: 15466596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How the initiating ribosome copes with ppGpp to translate mRNAs.
    Vinogradova DS; Zegarra V; Maksimova E; Nakamoto JA; Kasatsky P; Paleskava A; Konevega AL; Milón P
    PLoS Biol; 2020 Jan; 18(1):e3000593. PubMed ID: 31995552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From microbial differentiation to ribosome engineering.
    Ochi K
    Biosci Biotechnol Biochem; 2007 Jun; 71(6):1373-86. PubMed ID: 17587668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.