These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 26951740)
1. Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803. Choi YN; Park JM Bioresour Technol; 2016 Aug; 213():54-57. PubMed ID: 26951740 [TBL] [Abstract][Full Text] [Related]
2. Metabolic flux of the oxidative pentose phosphate pathway under low light conditions in Synechocystis sp. PCC 6803. Ueda K; Nakajima T; Yoshikawa K; Toya Y; Matsuda F; Shimizu H J Biosci Bioeng; 2018 Jul; 126(1):38-43. PubMed ID: 29499995 [TBL] [Abstract][Full Text] [Related]
3. Unconventional biochemical regulation of the oxidative pentose phosphate pathway in the model cyanobacterium Synechocystis sp. PCC 6803. Ito S; Osanai T Biochem J; 2020 Apr; 477(7):1309-1321. PubMed ID: 32227111 [TBL] [Abstract][Full Text] [Related]
4. Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. Summers ML; Wallis JG; Campbell EL; Meeks JC J Bacteriol; 1995 Nov; 177(21):6184-94. PubMed ID: 7592384 [TBL] [Abstract][Full Text] [Related]
5. Time-resolved analysis of short term metabolic adaptation at dark transition in Synechocystis sp. PCC 6803. Maruyama M; Nishiguchi H; Toyoshima M; Okahashi N; Matsuda F; Shimizu H J Biosci Bioeng; 2019 Oct; 128(4):424-428. PubMed ID: 30979614 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis. Yoshikawa K; Toya Y; Shimizu H Bioprocess Biosyst Eng; 2017 May; 40(5):791-796. PubMed ID: 28258322 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a zwf mutant of Synechococcus sp. strain PCC 7942. Scanlan DJ; Sundaram S; Newman J; Mann NH; Carr NG J Bacteriol; 1995 May; 177(9):2550-3. PubMed ID: 7730289 [TBL] [Abstract][Full Text] [Related]
8. Effect of malic enzyme on ethanol production by Synechocystis sp. PCC 6803. Yoshikawa K; Hirasawa T; Shimizu H J Biosci Bioeng; 2015 Jan; 119(1):82-4. PubMed ID: 25022874 [TBL] [Abstract][Full Text] [Related]
9. NADPH production in dark stages is critical for cyanobacterial photocurrent generation: a study using mutants deficient in oxidative pentose phosphate pathway. Hatano J; Kusama S; Tanaka K; Kohara A; Miyake C; Nakanishi S; Shimakawa G Photosynth Res; 2022 Aug; 153(1-2):113-120. PubMed ID: 35182311 [TBL] [Abstract][Full Text] [Related]
10. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Shi F; Li K; Huan X; Wang X Appl Biochem Biotechnol; 2013 Sep; 171(2):504-21. PubMed ID: 23868449 [TBL] [Abstract][Full Text] [Related]
11. Single Amino Acid Change in 6-Phosphogluconate Dehydrogenase from Synechocystis Conveys Higher Affinity for NADP+ and Altered Mode of Inhibition by NADPH. Ito S; Osanai T Plant Cell Physiol; 2018 Dec; 59(12):2452-2461. PubMed ID: 30107441 [TBL] [Abstract][Full Text] [Related]
12. From genome to enzyme: analysis of key glycolytic and oxidative pentose-phosphate pathway enzymes in the cyanobacterium Synechocystis sp. PCC 6803. Knowles VL; Plaxton WC Plant Cell Physiol; 2003 Jul; 44(7):758-63. PubMed ID: 12881504 [TBL] [Abstract][Full Text] [Related]
13. Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Kim YM; Cho HS; Jung GY; Park JM Biotechnol Bioeng; 2011 Dec; 108(12):2941-6. PubMed ID: 21732330 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803. Wang X; Xiong X; Sa N; Roje S; Chen S Appl Microbiol Biotechnol; 2016 Jul; 100(13):6091-101. PubMed ID: 27154348 [TBL] [Abstract][Full Text] [Related]
15. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Jin XM; Chang YK; Lee JH; Hong SK J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222 [TBL] [Abstract][Full Text] [Related]
16. Photoheterotrophic fluxome in Synechocystis sp. strain PCC 6803 and its implications for cyanobacterial bioenergetics. You L; He L; Tang YJ J Bacteriol; 2015 Mar; 197(5):943-50. PubMed ID: 25535269 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Wang Y; Sun T; Gao X; Shi M; Wu L; Chen L; Zhang W Metab Eng; 2016 Mar; 34():60-70. PubMed ID: 26546088 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of Bacitracin Production by NADPH Generation via Overexpressing Glucose-6-Phosphate Dehydrogenase Zwf in Bacillus licheniformis. Zhu S; Cai D; Liu Z; Zhang B; Li J; Chen S; Ma X Appl Biochem Biotechnol; 2019 Apr; 187(4):1502-1514. PubMed ID: 30267286 [TBL] [Abstract][Full Text] [Related]
19. A comparison of gene organization in the zwf region of the genomes of the cyanobacteria Synechococcus sp. PCC 7942 and Anabaena sp. PCC 7120. Newman J; Karakaya H; Scanlan DJ; Mann NH FEMS Microbiol Lett; 1995 Nov; 133(1-2):187-93. PubMed ID: 8566707 [TBL] [Abstract][Full Text] [Related]
20. Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803. Vidal R Appl Microbiol Biotechnol; 2017 Apr; 101(8):3473-3482. PubMed ID: 28160048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]