BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26951741)

  • 1. Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source.
    Bhatia SK; Lee BR; Sathiyanarayanan G; Song HS; Kim J; Jeon JM; Kim JH; Park SH; Yu JH; Park K; Yang YH
    Bioresour Technol; 2016 Oct; 217():141-9. PubMed ID: 26951741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Search of the E. coli Compounds that Change the Antibiotic Production Pattern of Streptomyces coelicolor During Inter-species Interaction.
    Mavituna F; Luti KJ; Gu L
    Enzyme Microb Technol; 2016 Aug; 90():45-52. PubMed ID: 27241291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elicitation of Streptomyces coelicolor with dead cells of Bacillus subtilis and Staphylococcus aureus in a bioreactor increases production of undecylprodigiosin.
    Luti KJ; Mavituna F
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):461-6. PubMed ID: 21222119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in
    Jin XM; Chang YK; Lee JH; Hong SK
    J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of phosphopantetheinyl transferase genes in antibiotic production by Streptomyces coelicolor.
    Lu YW; San Roman AK; Gehring AM
    J Bacteriol; 2008 Oct; 190(20):6903-8. PubMed ID: 18689472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streptomyces coelicolor increases the production of undecylprodigiosin when interacted with Bacillus subtilis.
    Luti KJ; Mavituna F
    Biotechnol Lett; 2011 Jan; 33(1):113-8. PubMed ID: 20878541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Catabolite Regulation of Secondary Metabolite Formation and Morphological Differentiation in Streptomyces coelicolor.
    Romero-Rodríguez A; Ruiz-Villafán B; Tierrafría VH; Rodríguez-Sanoja R; Sánchez S
    Appl Biochem Biotechnol; 2016 Nov; 180(6):1152-1166. PubMed ID: 27372741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production.
    Rioseras B; López-García MT; Yagüe P; Sánchez J; Manteca A
    Bioresour Technol; 2014 Jan; 151():191-8. PubMed ID: 24240146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in streptomyces coelicolor.
    Świątek MA; Gubbens J; Bucca G; Song E; Yang YH; Laing E; Kim BG; Smith CP; van Wezel GP
    J Bacteriol; 2013 Mar; 195(6):1236-48. PubMed ID: 23292782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of TerD-domain-encoding genes: effect on Streptomyces coelicolor development.
    Sanssouci É; Lerat S; Daigle F; Grondin G; Shareck F; Beaulieu C
    Can J Microbiol; 2012 Oct; 58(10):1221-9. PubMed ID: 23072443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor.
    Manteca A; Alvarez R; Salazar N; Yagüe P; Sanchez J
    Appl Environ Microbiol; 2008 Jun; 74(12):3877-86. PubMed ID: 18441105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced production of undecylprodigiosin in Streptomyces coelicolor by co-cultivation with the corallopyronin A-producing myxobacterium, Corallococcus coralloides.
    Schäberle TF; Orland A; König GM
    Biotechnol Lett; 2014 Mar; 36(3):641-8. PubMed ID: 24249103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An overview of the two-component system GarR/GarS role on antibiotic production in Streptomyces coelicolor.
    Cruz-Bautista R; Zelarayan-Agüero A; Ruiz-Villafán B; Escalante-Lozada A; Rodríguez-Sanoja R; Sánchez S
    Appl Microbiol Biotechnol; 2024 Apr; 108(1):306. PubMed ID: 38656376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of extracellular ATP on the physiology of Streptomyces coelicolor A3(2).
    Li M; Kim TJ; Kwon HJ; Suh JW
    FEMS Microbiol Lett; 2008 Sep; 286(1):24-31. PubMed ID: 18565122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allantoin catabolism influences the production of antibiotics in Streptomyces coelicolor.
    Navone L; Casati P; Licona-Cassani C; Marcellin E; Nielsen LK; Rodriguez E; Gramajo H
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):351-60. PubMed ID: 24292080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based process intensification of dilute acid pre-hydrolysis of oil palm empty fruit bunch biomass for pretreatment and furfural production.
    Ouyang D; Liu T; Astimar AA; Lau HLN; Teh SS; Nursyairah J; Liu D; Zhao X
    Bioresour Technol; 2023 Mar; 372():128626. PubMed ID: 36642202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans.
    Avignone Rossa C; White J; Kuiper A; Postma PW; Bibb M; Teixeira de Mattos MJ
    Metab Eng; 2002 Apr; 4(2):138-50. PubMed ID: 12009793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor.
    Shu D; Chen L; Wang W; Yu Z; Ren C; Zhang W; Yang S; Lu Y; Jiang W
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1149-60. PubMed ID: 18949475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Scale Transposition Mutagenesis of Streptomyces coelicolor Identifies Hundreds of Genes Influencing Antibiotic Biosynthesis.
    Xu Z; Wang Y; Chater KF; Ou HY; Xu HH; Deng Z; Tao M
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28062460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.
    Bhatia SK; Kim J; Song HS; Kim HJ; Jeon JM; Sathiyanarayanan G; Yoon JJ; Park K; Kim YG; Yang YH
    Bioresour Technol; 2017 Jun; 233():99-109. PubMed ID: 28260667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.