These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 26952143)
1. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling. Punt A; Paini A; Spenkelink A; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM Chem Res Toxicol; 2016 Apr; 29(4):659-68. PubMed ID: 26952143 [TBL] [Abstract][Full Text] [Related]
2. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes. Paini A; Punt A; Viton F; Scholz G; Delatour T; Marin-Kuan M; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Appl Pharmacol; 2010 May; 245(1):57-66. PubMed ID: 20144636 [TBL] [Abstract][Full Text] [Related]
3. Estragole DNA adduct accumulation in human liver HepaRG cells upon repeated in vitro exposure. Yang S; Wesseling S; Rietjens IMCM Toxicol Lett; 2021 Feb; 337():1-6. PubMed ID: 33189830 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the interindividual human variation in bioactivation of methyleugenol using physiologically based kinetic modeling and Monte Carlo simulations. Al-Subeihi AA; Alhusainy W; Kiwamoto R; Spenkelink B; van Bladeren PJ; Rietjens IM; Punt A Toxicol Appl Pharmacol; 2015 Mar; 283(2):117-26. PubMed ID: 25549870 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of human interindividual variation in bioactivation of estragole using physiologically based biokinetic modeling. Punt A; Jeurissen SM; Boersma MG; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Sci; 2010 Feb; 113(2):337-48. PubMed ID: 19920071 [TBL] [Abstract][Full Text] [Related]
6. Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect. Alhusainy W; Paini A; Punt A; Louisse J; Spenkelink A; Vervoort J; Delatour T; Scholz G; Schilter B; Adams T; van Bladeren PJ; Rietjens IM Toxicol Appl Pharmacol; 2010 Jun; 245(2):179-90. PubMed ID: 20226806 [TBL] [Abstract][Full Text] [Related]
7. A physiologically based in silico model for trans-2-hexenal detoxification and DNA adduct formation in human including interindividual variation indicates efficient detoxification and a negligible genotoxicity risk. Kiwamoto R; Spenkelink A; Rietjens IM; Punt A Arch Toxicol; 2013 Sep; 87(9):1725-37. PubMed ID: 23864024 [TBL] [Abstract][Full Text] [Related]
8. In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling. Paini A; Punt A; Scholz G; Gremaud E; Spenkelink B; Alink G; Schilter B; van Bladeren PJ; Rietjens IM Mutagenesis; 2012 Nov; 27(6):653-63. PubMed ID: 22844077 [TBL] [Abstract][Full Text] [Related]
9. In vivo validation and physiologically based biokinetic modeling of the inhibition of SULT-mediated estragole DNA adduct formation in the liver of male Sprague-Dawley rats by the basil flavonoid nevadensin. Alhusainy W; Paini A; van den Berg JH; Punt A; Scholz G; Schilter B; van Bladeren PJ; Taylor S; Adams TB; Rietjens IM Mol Nutr Food Res; 2013 Nov; 57(11):1969-78. PubMed ID: 23894034 [TBL] [Abstract][Full Text] [Related]
10. A physiologically based biokinetic (PBBK) model for estragole bioactivation and detoxification in rat. Punt A; Freidig AP; Delatour T; Scholz G; Boersma MG; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Appl Pharmacol; 2008 Sep; 231(2):248-59. PubMed ID: 18539307 [TBL] [Abstract][Full Text] [Related]
11. Matrix modulation of the bioactivation of estragole by constituents of different alkenylbenzene-containing herbs and spices and physiologically based biokinetic modeling of possible in vivo effects. Alhusainy W; van den Berg SJ; Paini A; Campana A; Asselman M; Spenkelink A; Punt A; Scholz G; Schilter B; Adams TB; van Bladeren PJ; Rietjens IM Toxicol Sci; 2012 Sep; 129(1):174-87. PubMed ID: 22649189 [TBL] [Abstract][Full Text] [Related]
12. Physiologically based kinetic modeling of bioactivation and detoxification of the alkenylbenzene methyleugenol in human as compared with rat. Al-Subeihi AA; Spenkelink B; Punt A; Boersma MG; van Bladeren PJ; Rietjens IM Toxicol Appl Pharmacol; 2012 May; 260(3):271-84. PubMed ID: 22445790 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of methyleugenol bioactivation by the herb-based constituent nevadensin and prediction of possible in vivo consequences using physiologically based kinetic modeling. Al-Subeihi AA; Alhusainy W; Paini A; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM Food Chem Toxicol; 2013 Sep; 59():564-71. PubMed ID: 23831728 [TBL] [Abstract][Full Text] [Related]
14. Physiologically based kinetic models for the alkenylbenzene elemicin in rat and human and possible implications for risk assessment. van den Berg SJ; Punt A; Soffers AE; Vervoort J; Ngeleja S; Spenkelink B; Rietjens IM Chem Res Toxicol; 2012 Nov; 25(11):2352-67. PubMed ID: 22992039 [TBL] [Abstract][Full Text] [Related]
15. 32P-post-labelling analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other naturally-occurring alkenylbenzenes. I. Adult female CD-1 mice. Randerath K; Haglund RE; Phillips DH; Reddy MV Carcinogenesis; 1984 Dec; 5(12):1613-22. PubMed ID: 6499112 [TBL] [Abstract][Full Text] [Related]
16. Use of physiologically based biokinetic (PBBK) modeling to study estragole bioactivation and detoxification in humans as compared with male rats. Punt A; Paini A; Boersma MG; Freidig AP; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Sci; 2009 Aug; 110(2):255-69. PubMed ID: 19447879 [TBL] [Abstract][Full Text] [Related]
17. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes. Kiwamoto R; Spenkelink A; Rietjens IM; Punt A Toxicol Appl Pharmacol; 2015 Jan; 282(1):108-17. PubMed ID: 25448044 [TBL] [Abstract][Full Text] [Related]
18. Major role of hepatic sulfotransferase activity in the metabolic activation, DNA adduct formation, and carcinogenicity of 1'-hydroxy-2',3'-dehydroestragole in infant male C57BL/6J x C3H/HeJ F1 mice. Fennell TR; Wiseman RW; Miller JA; Miller EC Cancer Res; 1985 Nov; 45(11 Pt 1):5310-20. PubMed ID: 3863702 [TBL] [Abstract][Full Text] [Related]
19. Study on inter-ethnic human differences in bioactivation and detoxification of estragole using physiologically based kinetic modeling. Ning J; Louisse J; Spenkelink B; Wesseling S; Rietjens IMCM Arch Toxicol; 2017 Sep; 91(9):3093-3108. PubMed ID: 28357488 [TBL] [Abstract][Full Text] [Related]
20. Physiologically based biokinetic (PBBK) model for safrole bioactivation and detoxification in rats. Martati E; Boersma MG; Spenkelink A; Khadka DB; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM Chem Res Toxicol; 2011 Jun; 24(6):818-34. PubMed ID: 21446753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]