These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention. Doesburg SM; Green JJ; McDonald JJ; Ward LM Brain Res; 2009 Dec; 1303():97-110. PubMed ID: 19782056 [TBL] [Abstract][Full Text] [Related]
4. Lateralization in Alpha-Band Oscillations Predicts the Locus and Spatial Distribution of Attention. Ikkai A; Dandekar S; Curtis CE PLoS One; 2016; 11(5):e0154796. PubMed ID: 27144717 [TBL] [Abstract][Full Text] [Related]
5. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention. Lobier M; Palva JM; Palva S Neuroimage; 2018 Jan; 165():222-237. PubMed ID: 29074278 [TBL] [Abstract][Full Text] [Related]
6. Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. Capilla A; Schoffelen JM; Paterson G; Thut G; Gross J Cereb Cortex; 2014 Feb; 24(2):550-61. PubMed ID: 23118197 [TBL] [Abstract][Full Text] [Related]
7. Hemispheric lateralization in top-down attention during spatial relation processing: a Granger causal model approach. Falasca NW; D'Ascenzo S; Di Domenico A; Onofrj M; Tommasi L; Laeng B; Franciotti R Eur J Neurosci; 2015 Apr; 41(7):914-24. PubMed ID: 25704649 [TBL] [Abstract][Full Text] [Related]
8. Preparatory α-band oscillations reflect spatial gating independently of predictions regarding target identity. Wildegger T; van Ede F; Woolrich M; Gillebert CR; Nobre AC J Neurophysiol; 2017 Mar; 117(3):1385-1394. PubMed ID: 28077669 [TBL] [Abstract][Full Text] [Related]
9. Attentional shifts towards an expected visual target alter the level of alpha-band oscillatory activity in the human calcarine cortex. Yamagishi N; Goda N; Callan DE; Anderson SJ; Kawato M Brain Res Cogn Brain Res; 2005 Dec; 25(3):799-809. PubMed ID: 16246532 [TBL] [Abstract][Full Text] [Related]
10. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex. Marshall TR; O'Shea J; Jensen O; Bergmann TO J Neurosci; 2015 Jan; 35(4):1638-47. PubMed ID: 25632139 [TBL] [Abstract][Full Text] [Related]
11. Alpha and alpha-beta phase synchronization mediate the recruitment of the visuospatial attention network through the Superior Longitudinal Fasciculus. D'Andrea A; Chella F; Marshall TR; Pizzella V; Romani GL; Jensen O; Marzetti L Neuroimage; 2019 Mar; 188():722-732. PubMed ID: 30605784 [TBL] [Abstract][Full Text] [Related]
13. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Siegel M; Donner TH; Oostenveld R; Fries P; Engel AK Neuron; 2008 Nov; 60(4):709-19. PubMed ID: 19038226 [TBL] [Abstract][Full Text] [Related]
14. The neural correlates of attention orienting in visuospatial working memory for detecting feature and conjunction changes. Yeh YY; Kuo BC; Liu HL Brain Res; 2007 Jan; 1130(1):146-57. PubMed ID: 17173876 [TBL] [Abstract][Full Text] [Related]
15. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study. Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208 [TBL] [Abstract][Full Text] [Related]
16. Top-down Modulation of Neural Activity in Anticipatory Visual Attention: Control Mechanisms Revealed by Simultaneous EEG-fMRI. Liu Y; Bengson J; Huang H; Mangun GR; Ding M Cereb Cortex; 2016 Feb; 26(2):517-29. PubMed ID: 25205663 [TBL] [Abstract][Full Text] [Related]