BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26952251)

  • 1. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.
    Davin N; Edger PP; Hefer CA; Mizrachi E; Schuetz M; Smets E; Myburg AA; Douglas CJ; Schranz ME; Lens F
    Plant J; 2016 Jun; 86(5):376-90. PubMed ID: 26952251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Arabidopsis wood model-the case for the inflorescence stem.
    Strabala TJ; Macmillan CP
    Plant Sci; 2013 Sep; 210():193-205. PubMed ID: 23849126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of secondary growth in Arabidopsis thaliana.
    Oh S; Park S; Han KH
    J Exp Bot; 2003 Dec; 54(393):2709-22. PubMed ID: 14585825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees.
    Liu L; Filkov V; Groover A
    Physiol Plant; 2014 Jun; 151(2):156-63. PubMed ID: 24117954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth.
    Agusti J; Lichtenberger R; Schwarz M; Nehlin L; Greb T
    PLoS Genet; 2011 Feb; 7(2):e1001312. PubMed ID: 21379334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.
    Robischon M; Du J; Miura E; Groover A
    Plant Physiol; 2011 Mar; 155(3):1214-25. PubMed ID: 21205615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of the Populus trichocarpa CLE family.
    Han H; Zhang G; Wu M; Wang G
    BMC Genomics; 2016 Mar; 17():174. PubMed ID: 26935217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional Roadmap to Seasonal Variation in Wood Formation of Norway Spruce.
    Jokipii-Lukkari S; Delhomme N; Schiffthaler B; Mannapperuma C; Prestele J; Nilsson O; Street NR; Tuominen H
    Plant Physiol; 2018 Apr; 176(4):2851-2870. PubMed ID: 29487121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small but thick enough--the Arabidopsis hypocotyl as a model to study secondary growth.
    Ragni L; Hardtke CS
    Physiol Plant; 2014 Jun; 151(2):164-71. PubMed ID: 24128126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secondary development in the stem: when Arabidopsis and trees are closer than it seems.
    Barra-Jiménez A; Ragni L
    Curr Opin Plant Biol; 2017 Feb; 35():145-151. PubMed ID: 28013083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rays, intrusive growth, and storied cambium in the inflorescence stems of Arabidopsis thaliana (L.) Heynh.
    Mazur E; Kurczynska EU
    Protoplasma; 2012 Jan; 249(1):217-20. PubMed ID: 21311923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and hormonal regulation of cambial development.
    Ursache R; Nieminen K; Helariutta Y
    Physiol Plant; 2013 Jan; 147(1):36-45. PubMed ID: 22551327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana.
    Melzer S; Lens F; Gennen J; Vanneste S; Rohde A; Beeckman T
    Nat Genet; 2008 Dec; 40(12):1489-92. PubMed ID: 18997783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis as a model for wood formation.
    Zhang J; Elo A; Helariutta Y
    Curr Opin Biotechnol; 2011 Apr; 22(2):293-9. PubMed ID: 21144727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers.
    Della Rovere F; Fattorini L; D'Angeli S; Veloccia A; Del Duca S; Cai G; Falasca G; Altamura MM
    Ann Bot; 2015 Mar; 115(4):617-28. PubMed ID: 25617411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis.
    Mitsuda N; Iwase A; Yamamoto H; Yoshida M; Seki M; Shinozaki K; Ohme-Takagi M
    Plant Cell; 2007 Jan; 19(1):270-80. PubMed ID: 17237351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water lily (
    Povilus RA; DaCosta JM; Grassa C; Satyaki PRV; Moeglein M; Jaenisch J; Xi Z; Mathews S; Gehring M; Davis CC; Friedman WE
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8649-8656. PubMed ID: 32234787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA comparison between poplar and larch provides insight into the different mechanism of wood formation.
    Li H; Huang X; Li W; Lu Y; Dai X; Zhou Z; Li Q
    Plant Cell Rep; 2020 Sep; 39(9):1199-1217. PubMed ID: 32577818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of cambium initiation and activity in Arabidopsis by the transcriptional regulator AHL15.
    Rahimi A; Karami O; Lestari AD; de Werk T; Amakorová P; Shi D; Novák O; Greb T; Offringa R
    Curr Biol; 2022 Apr; 32(8):1764-1775.e3. PubMed ID: 35294866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.