These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2695232)

  • 21. Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens.
    Li HS; Yang JM; Jacobson RD; Pasko D; Sundin O
    Dev Biol; 1994 Mar; 162(1):181-94. PubMed ID: 8125186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer.
    Servetnick M; Grainger RM
    Development; 1991 May; 112(1):177-88. PubMed ID: 1769326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stage-dependent requirement of neuroretinal Pax6 for lens and retina development.
    Klimova L; Kozmik Z
    Development; 2014 Mar; 141(6):1292-302. PubMed ID: 24523460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Features of embryonic induction.
    Jacobson AG; Sater AK
    Development; 1988 Nov; 104(3):341-59. PubMed ID: 3076860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Apoptosis and lens vesicle development.
    Mohamed YH; Amemiya T
    Eur J Ophthalmol; 2003; 13(1):1-10. PubMed ID: 12635668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Morphogens: experimental illusion or reality?].
    Mikhaĭlov AT
    Ontogenez; 1984; 15(6):563-84. PubMed ID: 6395056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The transmission of morphogenetic signals from amphibian mesoderm to ectoderm in primary induction.
    Toivonen S; Tarin D; Saxén L
    Differentiation; 1976 Jan; 5(1):49-55. PubMed ID: 789165
    [No Abstract]   [Full Text] [Related]  

  • 28. The lens: a classical model of embryonic induction providing new insights into cell determination in early development.
    Gunhaga L
    Philos Trans R Soc Lond B Biol Sci; 2011 Apr; 366(1568):1193-203. PubMed ID: 21402580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatio-temporal distribution of acidic and basic FGF indicates a role for FGF in rat lens morphogenesis.
    de Iongh R; McAvoy JW
    Dev Dyn; 1993 Nov; 198(3):190-202. PubMed ID: 7511009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lens-forming competence in the epidermis of Xenopus laevis during development.
    Arresta E; Bernardini S; Gargioli C; Filoni S; Cannata SM
    J Exp Zool A Comp Exp Biol; 2005 Jan; 303(1):1-12. PubMed ID: 15612005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular profiling: gene expression reveals discrete phases of lens induction and development in Xenopus laevis.
    Walter BE; Tian Y; Garlisch AK; Carinato ME; Elkins MB; Wolfe AD; Schaefer JJ; Perry KJ; Henry JJ
    Mol Vis; 2004 Mar; 10():186-98. PubMed ID: 15064684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphogenetic movements during the early development of the chick eye. A light microscopic and spatial reconstructive study.
    Schook P
    Acta Morphol Neerl Scand; 1980 Mar; 18(1):1-30. PubMed ID: 7395551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Critical period in the work of the form-inducing apparatus of the lens in chick embryos, detected after chloramphenicol application].
    Puchkov VF
    Arkh Anat Gistol Embriol; 1978 Feb; 74(2):50-4. PubMed ID: 646636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation.
    Kondoh H; Uchikawa M; Kamachi Y
    Int J Dev Biol; 2004; 48(8-9):819-27. PubMed ID: 15558474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical investigation of lens induction in vitro. II. Demonstration of the induction substance.
    Van Der Starre H
    Acta Morphol Neerl Scand; 1978 May; 16(2):109-20. PubMed ID: 676800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye.
    Ashery-Padan R; Marquardt T; Zhou X; Gruss P
    Genes Dev; 2000 Nov; 14(21):2701-11. PubMed ID: 11069887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development.
    Vogel-Höpker A; Momose T; Rohrer H; Yasuda K; Ishihara L; Rapaport DH
    Mech Dev; 2000 Jun; 94(1-2):25-36. PubMed ID: 10842056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The distribution of lens differentiation capacity in the head ectoderm of chick embryos.
    Barabanov VM; Fedtsova NG
    Differentiation; 1982 May; 21(3):183-90. PubMed ID: 7049809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Induction mechanisms and the programming of differentiation].
    Lopashov GV; Khoperskaia OA
    Ontogenez; 1977; 8(6):563-81. PubMed ID: 341012
    [No Abstract]   [Full Text] [Related]  

  • 40. Bmp4 from the optic vesicle specifies murine retina formation.
    Huang J; Liu Y; Oltean A; Beebe DC
    Dev Biol; 2015 Jun; 402(1):119-26. PubMed ID: 25792196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.