BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26952428)

  • 1. A computational study of stent performance by considering vessel anisotropy and residual stresses.
    Schiavone A; Zhao LG
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():307-16. PubMed ID: 26952428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery--finite element simulation.
    Schiavone A; Zhao LG; Abdel-Wahab AA
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():479-88. PubMed ID: 25063145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries.
    Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA
    J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element evaluation of artery damage in deployment of polymeric stent with pre- and post-dilation.
    He R; Zhao LG; Silberschmidt VV; Liu Y; Vogt F
    Biomech Model Mechanobiol; 2020 Feb; 19(1):47-60. PubMed ID: 31317295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element comparison of performance related characteristics of balloon expandable stents.
    Donnelly EW; Bruzzi MS; Connolley T; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Apr; 10(2):103-10. PubMed ID: 18651276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations.
    Qiu TY; Zhao LG; Song M
    Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic residual stresses in arteries.
    Sigaeva T; Sommer G; Holzapfel GA; Di Martino ES
    J R Soc Interface; 2019 Feb; 16(151):20190029. PubMed ID: 30958201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the expansive deformation of a bioresorbable polymer fiber stent.
    Welch T; Eberhart RC; Chuong CJ
    Ann Biomed Eng; 2008 May; 36(5):742-51. PubMed ID: 18264765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical behavior of fully expanded commercially available endovascular coronary stents.
    Tambaca J; Canic S; Kosor M; Fish RD; Paniagua D
    Tex Heart Inst J; 2011; 38(5):491-501. PubMed ID: 22163122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stresses in peripheral arteries following stent placement: a finite element analysis.
    Early M; Lally C; Prendergast PJ; Kelly DJ
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):25-33. PubMed ID: 18821189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of the radial mechanical performance of PLLA coronary artery stents.
    Pauck RG; Reddy BD
    Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Looped ends versus open ends braided stent: A comparison of the mechanical behaviour using analytical and numerical methods.
    Shanahan C; Tiernan P; Tofail SAM
    J Mech Behav Biomed Mater; 2017 Nov; 75():581-591. PubMed ID: 28863400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of stent graft oversizing on radial forces considering nitinol wire behavior and vessel characteristics.
    Senf B; von Sachsen S; Neugebauer R; Drossel WG; Florek HJ; Mohr FW; Etz CD
    Med Eng Phys; 2014 Nov; 36(11):1480-6. PubMed ID: 25183045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiobjective design optimisation of coronary stents.
    Pant S; Limbert G; Curzen NP; Bressloff NW
    Biomaterials; 2011 Nov; 32(31):7755-73. PubMed ID: 21821283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury.
    Karimi A; Razaghi R; Shojaei A; Navidbakhsh M
    Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the importance of modeling stent procedure for predicting arterial mechanics.
    Zhao S; Gu L; Froemming SR
    J Biomech Eng; 2012 Dec; 134(12):121005. PubMed ID: 23363207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-expanding stent modelling and radial force accuracy.
    Ghriallais RN; Bruzzi M
    Comput Methods Biomech Biomed Engin; 2014; 17(4):318-33. PubMed ID: 22587464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiovascular stent design and vessel stresses: a finite element analysis.
    Lally C; Dolan F; Prendergast PJ
    J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.