BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26952428)

  • 21. Finite element analysis of the biomechanical interaction between coronary sinus and proximal anchoring stent in coronary sinus annuloplasty.
    Pham T; Deherrera M; Sun W
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1617-29. PubMed ID: 23405942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Virtual bench testing of new generation coronary stents.
    Mortier P; De Beule M; Segers P; Verdonck P; Verhegghe B
    EuroIntervention; 2011 Jul; 7(3):369-76. PubMed ID: 21729840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents.
    Wang Q; Fang G; Zhao Y; Wang G; Cai T
    J Mech Behav Biomed Mater; 2017 Jan; 65():415-427. PubMed ID: 27643678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical Interaction of an Expanding Coiled Stent with a Plaque-Containing Arterial Wall: A Finite Element Analysis.
    Welch TR; Eberhart RC; Banerjee S; Chuong CJ
    Cardiovasc Eng Technol; 2016 Mar; 7(1):58-68. PubMed ID: 26621671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the requirements of self-expandable stents for heart valve replacement: Radial force, hoop force and equilibrium.
    Cabrera MS; Oomens CW; Baaijens FP
    J Mech Behav Biomed Mater; 2017 Apr; 68():252-264. PubMed ID: 28219851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of stent design parameters on normal artery wall mechanics.
    Bedoya J; Meyer CA; Timmins LH; Moreno MR; Moore JE
    J Biomech Eng; 2006 Oct; 128(5):757-65. PubMed ID: 16995763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Virtual evaluation of stent graft deployment: a validated modeling and simulation study.
    De Bock S; Iannaccone F; De Santis G; De Beule M; Van Loo D; Devos D; Vermassen F; Segers P; Verhegghe B
    J Mech Behav Biomed Mater; 2012 Sep; 13():129-39. PubMed ID: 22842656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical study of the uniformity of balloon-expandable stent deployment.
    Mortier P; De Beule M; Carlier SG; Van Impe R; Verhegghe B; Verdonck P
    J Biomech Eng; 2008 Apr; 130(2):021018. PubMed ID: 18412505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A computational analysis of the deformation of the femoropopliteal artery with stenting.
    NĂ­ Ghriallais R; Bruzzi M
    J Biomech Eng; 2014 Jul; 136(7):. PubMed ID: 24686902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination effect of two different NiTi stents on the vessel wall and studying their flexibility using finite element method.
    Salemizadehparizi F; Mehrabi R
    Comput Methods Biomech Biomed Engin; 2022 Oct; 25(13):1520-1530. PubMed ID: 34967243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the stent expansion in a stenosed artery using finite element method: application to stent versus stent study.
    Imani SM; Goudarzi AM; Ghasemi SE; Kalani A; Mahdinejad J
    Proc Inst Mech Eng H; 2014 Oct; 228(10):996-1004. PubMed ID: 25406228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of stents exhibiting negative Poisson's ratio effect.
    Raamachandran J; Jayavenkateshwaran K
    Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):245-55. PubMed ID: 17671858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wrinkling instabilities for biologically relevant fiber-reinforced composite materials with a case study of Neo-Hookean/Ogden-Gasser-Holzapfel bilayer.
    Nguyen N; Nath N; Deseri L; Tzeng E; Velankar SS; Pocivavsek L
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2375-2395. PubMed ID: 32535739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear model of human descending thoracic aortic segments with residual stresses.
    Breslavsky I; Amabili M
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1839-1855. PubMed ID: 30073613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Propagation of dissection in a residually-stressed artery model.
    Wang L; Roper SM; Hill NA; Luo X
    Biomech Model Mechanobiol; 2017 Feb; 16(1):139-149. PubMed ID: 27395061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study on the deformation behavior and mechanical properties of new lower extremity arterial stents.
    Feng H; Shi X; Wang T; Wang K; Su J
    Comput Methods Programs Biomed; 2024 Apr; 247():108094. PubMed ID: 38401508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical investigations of the mechanical properties of braided vascular stents.
    Fu W; Xia Q; Yan R; Qiao A
    Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque.
    Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P
    Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design method of self-expanding stents suitable for the patient's condition.
    Yoshino D; Inoue K
    Proc Inst Mech Eng H; 2010; 224(9):1019-38. PubMed ID: 21053768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of computational modelling techniques for braided stent analysis.
    Kelly N; McGrath DJ; Sweeney CA; Kurtenbach K; Grogan JA; Jockenhoevel S; O'Brien BJ; Bruzzi M; McHugh PE
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1334-1344. PubMed ID: 31502888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.