BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 26952457)

  • 21. Preparation and in vitro evaluation of folate-receptor-targeted SPION-polymer micelle hybrids for MRI contrast enhancement in cancer imaging.
    Mahajan S; Koul V; Choudhary V; Shishodia G; Bharti AC
    Nanotechnology; 2013 Jan; 24(1):015603. PubMed ID: 23221062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycosaminoglycan-targeted iron oxide nanoparticles for magnetic resonance imaging of liver carcinoma.
    Yang RM; Fu CP; Li NN; Wang L; Xu XD; Yang DY; Fang JZ; Jiang XQ; Zhang LM
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():556-63. PubMed ID: 25491864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intrinsically Mn2+-Chelated Polydopamine Nanoparticles for Simultaneous Magnetic Resonance Imaging and Photothermal Ablation of Cancer Cells.
    Miao ZH; Wang H; Yang H; Li ZL; Zhen L; Xu CY
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16946-52. PubMed ID: 26196160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifunctional polymeric nanoparticles doubly loaded with SPION and ceftiofur retain their physical and biological properties.
    Solar P; González G; Vilos C; Herrera N; Juica N; Moreno M; Simon F; Velásquez L
    J Nanobiotechnology; 2015 Feb; 13():14. PubMed ID: 25886018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functionalizable silica-based micron-sized iron oxide particles for cellular magnetic resonance imaging.
    Raschzok N; Langer CM; Schmidt C; Lerche KH; Billecke N; Nehls K; Schlüter NB; Leder A; Rohn S; Mogl MT; Lüdemann L; Stelter L; Teichgräber UK; Neuhaus P; Sauer IM
    Cell Transplant; 2013; 22(11):1959-70. PubMed ID: 23294541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and in vitro characterization of pluronic-attached polyamidoamine dendrimers for drug delivery.
    Gu Z; Wang M; Fang Q; Zheng H; Wu F; Lin D; Xu Y; Jin Y
    Drug Dev Ind Pharm; 2015 May; 41(5):812-8. PubMed ID: 24745851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging.
    Yang J; Luo Y; Xu Y; Li J; Zhang Z; Wang H; Shen M; Shi X; Zhang G
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5420-8. PubMed ID: 25695661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles.
    Amiri H; Bordonali L; Lascialfari A; Wan S; Monopoli MP; Lynch I; Laurent S; Mahmoudi M
    Nanoscale; 2013 Sep; 5(18):8656-65. PubMed ID: 23896964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging.
    Wang G; Zhang X; Skallberg A; Liu Y; Hu Z; Mei X; Uvdal K
    Nanoscale; 2014 Mar; 6(5):2953-63. PubMed ID: 24480995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors.
    Shevtsov MA; Nikolaev BP; Yakovleva LY; Marchenko YY; Dobrodumov AV; Mikhrina AL; Martynova MG; Bystrova OA; Yakovenko IV; Ischenko AM
    Int J Nanomedicine; 2014; 9():273-87. PubMed ID: 24421639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Octreotide-conjugated PAMAM for targeted delivery to somatostatin receptors over-expressed tumor cells.
    Peng J; Qi X; Chen Y; Ma N; Zhang Z; Xing J; Zhu X; Li Z; Wu Z
    J Drug Target; 2014 Jun; 22(5):428-38. PubMed ID: 24437350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility.
    Zaloga J; Janko C; Nowak J; Matuszak J; Knaup S; Eberbeck D; Tietze R; Unterweger H; Friedrich RP; Duerr S; Heimke-Brinck R; Baum E; Cicha I; Dörje F; Odenbach S; Lyer S; Lee G; Alexiou C
    Int J Nanomedicine; 2014; 9():4847-66. PubMed ID: 25364244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Succinylated heparin monolayer coating vastly increases superparamagnetic iron oxide nanoparticle T
    Xie M; Liu S; Butch CJ; Liu S; Wang Z; Wang J; Zhang X; Nie S; Lu Q; Wang Y
    Nanoscale; 2019 Jul; 11(27):12905-12914. PubMed ID: 31250871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monoclonal antibody-conjugated superparamagnetic iron oxide nanoparticles for imaging of epidermal growth factor receptor-targeted cells and gliomas.
    Mu K; Zhang S; Ai T; Jiang J; Yao Y; Jiang L; Zhou Q; Xiang H; Zhu Y; Yang X; Zhu W
    Mol Imaging; 2015; 14():. PubMed ID: 26044549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heparin-coated superparamagnetic iron oxide nanoparticles as highly effective MRI contrast agent for cell labeling.
    Jung MJ; Ha YE; Lee DY
    J Control Release; 2011 Nov; 152 Suppl 1():e214-5. PubMed ID: 22195863
    [No Abstract]   [Full Text] [Related]  

  • 36. Preliminary Study of MR and Fluorescence Dual-mode Imaging: Combined Macrophage-Targeted and Superparamagnetic Polymeric Micelles.
    Li WJ; Wang Y; Liu Y; Wu T; Cai WL; Shuai XT; Hong GB
    Int J Med Sci; 2018; 15(2):129-141. PubMed ID: 29333097
    [No Abstract]   [Full Text] [Related]  

  • 37. Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells.
    Lindemann A; Lüdtke-Buzug K; Fräderich BM; Gräfe K; Pries R; Wollenberg B
    Int J Nanomedicine; 2014; 9():5025-40. PubMed ID: 25378928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-precipitation of DEAE-dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast.
    Barrow M; Taylor A; García Carrión J; Mandal P; Park BK; Poptani H; Murray P; Rosseinsky MJ; Adams DJ
    Contrast Media Mol Imaging; 2016 Sep; 11(5):362-370. PubMed ID: 27358113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells.
    Kumar M; Singh G; Arora V; Mewar S; Sharma U; Jagannathan NR; Sapra S; Dinda AK; Kharbanda S; Singh H
    Int J Nanomedicine; 2012; 7():3503-16. PubMed ID: 22848174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro mammalian cytotoxicological study of PAMAM dendrimers - towards quantitative structure activity relationships.
    Mukherjee SP; Davoren M; Byrne HJ
    Toxicol In Vitro; 2010 Feb; 24(1):169-77. PubMed ID: 19778601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.