BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

800 related articles for article (PubMed ID: 26952476)

  • 21. Design and characterization of HER-2-targeted gold nanoparticles for enhanced X-radiation treatment of locally advanced breast cancer.
    Chattopadhyay N; Cai Z; Pignol JP; Keller B; Lechtman E; Bendayan R; Reilly RM
    Mol Pharm; 2010 Dec; 7(6):2194-206. PubMed ID: 20973534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competitive adsorption of thiolated poly(ethylene glycol) and alkane-thiols on gold nanoparticles and its effect on cluster formation.
    Larson-Smith K; Pozzo DC
    Langmuir; 2012 Sep; 28(37):13157-65. PubMed ID: 22924831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, characterization, and functionalization of gold nanoparticles for cancer imaging.
    Craig GA; Allen PJ; Mason MD
    Methods Mol Biol; 2010; 624():177-93. PubMed ID: 20217596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding the Adsorption of Peptides and Proteins onto PEGylated Gold Nanoparticles.
    Perera YR; Xu JX; Amarasekara DL; Hughes AC; Abbood I; Fitzkee NC
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Poly(ethylene glycol)- and carboxylate-functionalized gold nanoparticles using polymer linkages: single-step synthesis, high stability, and plasmonic detection of proteins.
    Park G; Seo D; Chung IS; Song H
    Langmuir; 2013 Nov; 29(44):13518-26. PubMed ID: 24090031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A solution to the PEG dilemma: efficient bioconjugation of large gold nanoparticles for biodiagnostic applications using mixed layers.
    Liu T; Thierry B
    Langmuir; 2012 Nov; 28(44):15634-42. PubMed ID: 23061489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods.
    Tsai DH; DelRio FW; Keene AM; Tyner KM; MacCuspie RI; Cho TJ; Zachariah MR; Hackley VA
    Langmuir; 2011 Mar; 27(6):2464-77. PubMed ID: 21341776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative analyses of amount and localization of radiosensitizer gold nanoparticles interacting with cancer cells to optimize radiation therapy.
    Hatoyama K; Kitamura N; Takano-Kasuya M; Tokunaga M; Oikawa T; Ohta M; Hamada Y; Tada H; Kobayashi Y; Kamei T; Gonda K
    Biochem Biophys Res Commun; 2019 Jan; 508(4):1093-1100. PubMed ID: 30551875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles.
    Kim HJ; Takemoto H; Yi Y; Zheng M; Maeda Y; Chaya H; Hayashi K; Mi P; Pittella F; Christie RJ; Toh K; Matsumoto Y; Nishiyama N; Miyata K; Kataoka K
    ACS Nano; 2014 Sep; 8(9):8979-91. PubMed ID: 25133608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles.
    Barrios-Gumiel A; Sánchez-Nieves J; Pedziwiatr-Werbicka E; Abashkin V; Shcharbina N; Shcharbin D; Glińska S; Ciepluch K; Kuc-Ciepluch D; Lach D; Bryszewska M; Gómez R; de la Mata FJ
    Int J Pharm; 2020 Jan; 573():118867. PubMed ID: 31765788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of ligand composition on the in vivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles.
    Liu X; Huang N; Wang H; Li H; Jin Q; Ji J
    Biomaterials; 2013 Nov; 34(33):8370-81. PubMed ID: 23932246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of Folate-Thioglycolate-Gold Nanoconjugates by Using Citric Acid-PEG Branched Polymer for Inhibition of MCF-7 Cancer Cell Proliferation.
    Mani G; Kim S; Kim K
    Biomacromolecules; 2018 Aug; 19(8):3257-3267. PubMed ID: 29979877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytotoxicity, intracellular localization and exocytosis of citrate capped and PEG functionalized gold nanoparticles in human hepatocyte and kidney cells.
    Tlotleng N; Vetten MA; Keter FK; Skepu A; Tshikhudo R; Gulumian M
    Cell Biol Toxicol; 2016 Aug; 32(4):305-21. PubMed ID: 27184667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.
    He B; Yang D; Qin M; Zhang Y; He B; Dai W; Wang X; Zhang Q; Zhang H; Yin C
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):339-345. PubMed ID: 28993197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual Action Enhancement of Gold Nanoparticle Radiosensitization by Pentamidine in Triple Negative Breast Cancer.
    Her S; Cui L; Bristow RG; Allen C
    Radiat Res; 2016 May; 185(5):549-62. PubMed ID: 27135970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres.
    ; Malugin A; Ghandehari H
    J Appl Toxicol; 2010 Apr; 30(3):212-7. PubMed ID: 19902477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying dithiothreitol displacement of functional ligands from gold nanoparticles.
    Tsai DH; Shelton MP; DelRio FW; Elzey S; Guha S; Zachariah MR; Hackley VA
    Anal Bioanal Chem; 2012 Dec; 404(10):3015-23. PubMed ID: 23104310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NaNO
    López-Marzo AM; Hoyos-de-la-Torre R; Baldrich E
    Anal Chem; 2018 Mar; 90(6):4010-4018. PubMed ID: 29498271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimisation of immuno-gold nanoparticle complexes for antigen detection.
    van der Heide S; Russell DA
    J Colloid Interface Sci; 2016 Jun; 471():127-135. PubMed ID: 26994353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization.
    Park JW; Shumaker-Parry JS
    ACS Nano; 2015 Feb; 9(2):1665-82. PubMed ID: 25625548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.