These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26952495)

  • 1. The control of cell orientation using biodegradable alginate fibers fabricated by near-field electrospinning.
    Fuh YK; Wu YC; He ZY; Huang ZM; Hu WW
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():879-87. PubMed ID: 26952495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The control of alginate degradation to dynamically manipulate scaffold composition for in situ transfection application.
    Hu WW; Hu ZC
    Int J Biol Macromol; 2018 Oct; 117():1169-1178. PubMed ID: 29883703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber.
    Yang JM; Yang JH; Tsou SC; Ding CH; Hsu CC; Yang KC; Yang CC; Chen KS; Chen SW; Wang JS
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():170-177. PubMed ID: 27207051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coelectrospinning of chitosan/alginate fibers by dual-jet system for modulating material surfaces.
    Hu WW; Yu HN
    Carbohydr Polym; 2013 Jun; 95(2):716-27. PubMed ID: 23648033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.
    Aroguz AZ; Baysal K; Adiguzel Z; Baysal BM
    Appl Biochem Biotechnol; 2014 May; 173(2):433-48. PubMed ID: 24728760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking.
    Shen W; Hsieh YL
    Carbohydr Polym; 2014 Feb; 102():893-900. PubMed ID: 24507361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds.
    Jeong SI; Krebs MD; Bonino CA; Samorezov JE; Khan SA; Alsberg E
    Tissue Eng Part A; 2011 Jan; 17(1-2):59-70. PubMed ID: 20672984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility and membrane strength of C3H10T1/2 cell-loaded alginate-based microcapsules.
    Zhang WJ; Li BG; Zhang C; Xie XH; Tang TT
    Cytotherapy; 2008; 10(1):90-7. PubMed ID: 18202978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate/polyethylene glycol blend fibers and their properties for drug controlled release.
    Wang Q; Zhang N; Hu X; Yang J; Du Y
    J Biomed Mater Res A; 2007 Jul; 82(1):122-8. PubMed ID: 17269140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs.
    Wen Y; Gallego MR; Nielsen LF; Jorgensen L; Møller EH; Nielsen HM
    Eur J Pharm Biopharm; 2013 Sep; 85(1):87-98. PubMed ID: 23958320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering.
    Majima T; Funakosi T; Iwasaki N; Yamane ST; Harada K; Nonaka S; Minami A; Nishimura S
    J Orthop Sci; 2005 May; 10(3):302-7. PubMed ID: 15928894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanically tough biomacromolecular IPN hydrogel fibers by enzymatic and ionic crosslinking.
    Hu X; Lu L; Xu C; Li X
    Int J Biol Macromol; 2015 Jan; 72():403-9. PubMed ID: 25193098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable, photocrosslinked alginate hydrogels with independently tailorable physical properties and cell adhesivity.
    Jeon O; Powell C; Ahmed SM; Alsberg E
    Tissue Eng Part A; 2010 Sep; 16(9):2915-25. PubMed ID: 20486798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of magnetic alginate-based electrospun matrices crosslinked with different methods for potential hyperthermia treatment.
    Chen YH; Cheng CH; Chang WJ; Lin YC; Lin FH; Lin JC
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():338-49. PubMed ID: 26952432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan/alginate crosslinked hydrogels: preparation, characterization and application for cell growth purposes.
    Baysal K; Aroguz AZ; Adiguzel Z; Baysal BM
    Int J Biol Macromol; 2013 Aug; 59():342-8. PubMed ID: 23664939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Step-Index Optical Fiber Made of Biocompatible Hydrogels.
    Choi M; Humar M; Kim S; Yun SH
    Adv Mater; 2015 Jul; 27(27):4081-6. PubMed ID: 26045317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials.
    Kleinberger RM; Burke NA; Zhou C; Stöver HD
    J Biomater Sci Polym Ed; 2016; 27(4):351-69. PubMed ID: 26754568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture.
    Cuadros TR; Erices AA; Aguilera JM
    J Mech Behav Biomed Mater; 2015 Jun; 46():331-42. PubMed ID: 25661688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution.
    Boontheekul T; Kong HJ; Mooney DJ
    Biomaterials; 2005 May; 26(15):2455-65. PubMed ID: 15585248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.