These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 26952500)
1. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Krukiewicz K; Zak JK Mater Sci Eng C Mater Biol Appl; 2016 May; 62():927-42. PubMed ID: 26952500 [TBL] [Abstract][Full Text] [Related]
2. Carbon nanotubes for delivery of small molecule drugs. Wong BS; Yoong SL; Jagusiak A; Panczyk T; Ho HK; Ang WH; Pastorin G Adv Drug Deliv Rev; 2013 Dec; 65(15):1964-2015. PubMed ID: 23954402 [TBL] [Abstract][Full Text] [Related]
3. The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells. Cao N; Cheng D; Zou S; Ai H; Gao J; Shuai X Biomaterials; 2011 Mar; 32(8):2222-32. PubMed ID: 21186059 [TBL] [Abstract][Full Text] [Related]
4. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Pérez-Herrero E; Fernández-Medarde A Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885 [TBL] [Abstract][Full Text] [Related]
5. The Effective Role of Hydroxyapatite Based Composites in Anticancer Drug Delivery Systems. Saber-Samandari S; Nezafati N; Saber-Samandari S Crit Rev Ther Drug Carrier Syst; 2016; 33(1):41-75. PubMed ID: 27279338 [TBL] [Abstract][Full Text] [Related]
6. Polymeric biomaterials for the delivery of platinum-based anticancer drugs. Kim J; Pramanick S; Lee D; Park H; Kim WJ Biomater Sci; 2015 Jul; 3(7):1002-17. PubMed ID: 26221935 [TBL] [Abstract][Full Text] [Related]
7. Intracellularly Degradable, Self-Assembled Amphiphilic Block Copolycurcumin Nanoparticles for Efficient In Vivo Cancer Chemotherapy. Lv L; Guo Y; Shen Y; Liu J; Zhang W; Zhou D; Guo S Adv Healthc Mater; 2015 Jul; 4(10):1496-501, 1423. PubMed ID: 26033838 [TBL] [Abstract][Full Text] [Related]
8. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. Dheer D; Arora D; Jaglan S; Rawal RK; Shankar R J Drug Target; 2017 Jan; 25(1):1-16. PubMed ID: 27030377 [TBL] [Abstract][Full Text] [Related]
9. Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy. Wu XL; Kim JH; Koo H; Bae SM; Shin H; Kim MS; Lee BH; Park RW; Kim IS; Choi K; Kwon IC; Kim K; Lee DS Bioconjug Chem; 2010 Feb; 21(2):208-13. PubMed ID: 20073455 [TBL] [Abstract][Full Text] [Related]
10. Methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Lee H; Zeng F; Dunne M; Allen C Biomacromolecules; 2005; 6(6):3119-28. PubMed ID: 16283736 [TBL] [Abstract][Full Text] [Related]
12. Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Lian HY; Hu M; Liu CH; Yamauchi Y; Wu KC Chem Commun (Camb); 2012 May; 48(42):5151-3. PubMed ID: 22514015 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, self-assembly, and in vitro doxorubicin release behavior of dendron-like/linear/dendron-like poly(epsilon-caprolactone)-b-poly(ethylene glycol)-b-poly(epsilon-caprolactone) triblock copolymers. Yang Y; Hua C; Dong CM Biomacromolecules; 2009 Aug; 10(8):2310-8. PubMed ID: 19618927 [TBL] [Abstract][Full Text] [Related]
14. In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly(ethylene glycol)-b-polycaprolactone diblock copolymer. Kang YM; Kim GH; Kim JI; Kim DY; Lee BN; Yoon SM; Kim JH; Kim MS Biomaterials; 2011 Jul; 32(20):4556-64. PubMed ID: 21440935 [TBL] [Abstract][Full Text] [Related]
16. Asymmetrical polymer vesicles with a "stealthy" outer corona and an endosomal-escape-accelerating inner corona for efficient intracellular anticancer drug delivery. Liu Q; Chen J; Du J Biomacromolecules; 2014 Aug; 15(8):3072-82. PubMed ID: 25000487 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and drug release behavior of poly (trimethylene carbonate)-poly (ethylene glycol)-poly (trimethylene carbonate) nanoparticles. Zhang Y; Zhuo RX Biomaterials; 2005 May; 26(14):2089-94. PubMed ID: 15576183 [TBL] [Abstract][Full Text] [Related]
18. Preparation and in vitro characterization of dexamethasone-loaded poly(D,L-lactic acid) microspheres embedded in poly(ethylene glycol)-poly({varepsilon}-caprolactone)-poly(ethylene glycol) hydrogel for orthopedic tissue engineering. Fan M; Guo Q; Luo J; Luo F; Xie P; Tang X; Qian Z J Biomater Appl; 2013 Aug; 28(2):288-97. PubMed ID: 22561978 [TBL] [Abstract][Full Text] [Related]
19. Classification of stimuli-responsive polymers as anticancer drug delivery systems. Taghizadeh B; Taranejoo S; Monemian SA; Salehi Moghaddam Z; Daliri K; Derakhshankhah H; Derakhshani Z Drug Deliv; 2015 Feb; 22(2):145-55. PubMed ID: 24547737 [TBL] [Abstract][Full Text] [Related]
20. Role of integrated cancer nanomedicine in overcoming drug resistance. Iyer AK; Singh A; Ganta S; Amiji MM Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]