These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 26952500)
21. Silk fibroin biomaterials for controlled release drug delivery. Pritchard EM; Kaplan DL Expert Opin Drug Deliv; 2011 Jun; 8(6):797-811. PubMed ID: 21453189 [TBL] [Abstract][Full Text] [Related]
22. Biopolymeric alginate-chitosan nanoparticles as drug delivery carriers for cancer therapy. Bhunchu S; Rojsitthisak P Pharmazie; 2014 Aug; 69(8):563-70. PubMed ID: 25158565 [TBL] [Abstract][Full Text] [Related]
23. Natural Ingredient-Based Polymeric Nanoparticles for Cancer Treatment. Wong KH; Lu A; Chen X; Yang Z Molecules; 2020 Aug; 25(16):. PubMed ID: 32784890 [TBL] [Abstract][Full Text] [Related]
24. Poly(L-lactide)-b-poly(ethylene oxide) copolymers with different arms: hydrophilicity, biodegradable nanoparticles, in vitro degradation, and drug-release behavior. Liu Q; Cai C; Dong CM J Biomed Mater Res A; 2009 Mar; 88(4):990-9. PubMed ID: 18384173 [TBL] [Abstract][Full Text] [Related]
25. Tumor-Homing Cell-Penetrating Peptide Linked to Colloidal Mesoporous Silica Encapsulated (-)-Epigallocatechin-3-gallate as Drug Delivery System for Breast Cancer Therapy in Vivo. Ding J; Yao J; Xue J; Li R; Bao B; Jiang L; Zhu JJ; He Z ACS Appl Mater Interfaces; 2015 Aug; 7(32):18145-55. PubMed ID: 26225796 [TBL] [Abstract][Full Text] [Related]
26. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Knop K; Hoogenboom R; Fischer D; Schubert US Angew Chem Int Ed Engl; 2010 Aug; 49(36):6288-308. PubMed ID: 20648499 [TBL] [Abstract][Full Text] [Related]
27. Unimolecular micelles of amphiphilic cyclodextrin-core star-like block copolymers for anticancer drug delivery. Xu Z; Liu S; Liu H; Yang C; Kang Y; Wang M Chem Commun (Camb); 2015 Nov; 51(87):15768-71. PubMed ID: 26121632 [TBL] [Abstract][Full Text] [Related]
28. Micelles Based on Acid Degradable Poly(acetal urethane): Preparation, pH-Sensitivity, and Triggered Intracellular Drug Release. Huang F; Cheng R; Meng F; Deng C; Zhong Z Biomacromolecules; 2015 Jul; 16(7):2228-36. PubMed ID: 26110553 [TBL] [Abstract][Full Text] [Related]
29. Bioinspired Titanium Drug Eluting Platforms Based on a Poly-β-cyclodextrin-Chitosan Layer-by-Layer Self-Assembly Targeting Infections. Pérez-Anes A; Gargouri M; Laure W; Van Den Berghe H; Courcot E; Sobocinski J; Tabary N; Chai F; Blach JF; Addad A; Woisel P; Douroumis D; Martel B; Blanchemain N; Lyskawa J ACS Appl Mater Interfaces; 2015 Jun; 7(23):12882-93. PubMed ID: 25992843 [TBL] [Abstract][Full Text] [Related]
30. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? Taurin S; Nehoff H; Greish K J Control Release; 2012 Dec; 164(3):265-75. PubMed ID: 22800576 [TBL] [Abstract][Full Text] [Related]
31. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Park EK; Lee SB; Lee YM Biomaterials; 2005 Mar; 26(9):1053-61. PubMed ID: 15369694 [TBL] [Abstract][Full Text] [Related]
32. Polymersomes and their applications in cancer delivery and therapy. Guan L; Rizzello L; Battaglia G Nanomedicine (Lond); 2015; 10(17):2757-80. PubMed ID: 26328898 [TBL] [Abstract][Full Text] [Related]
33. A free-standing, sheet-shaped, "hydrophobic" biomaterial containing polymeric micelles formed from poly(ethylene glycol)-poly(lactic acid) block copolymer for possible incorporation/release of "hydrophilic" compounds. Moroishi H; Yoshida C; Murakami Y Colloids Surf B Biointerfaces; 2013 Feb; 102():597-603. PubMed ID: 23107939 [TBL] [Abstract][Full Text] [Related]
34. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior. Gong C; Shi S; Wu L; Gou M; Yin Q; Guo Q; Dong P; Zhang F; Luo F; Zhao X; Wei Y; Qian Z Acta Biomater; 2009 Nov; 5(9):3358-70. PubMed ID: 19470411 [TBL] [Abstract][Full Text] [Related]
35. Cellulose crosslinked pH-responsive polyurethanes for drug delivery: α-hydroxy acids as drug release modifiers. Solanki A; Thakore S Int J Biol Macromol; 2015 Sep; 80():683-91. PubMed ID: 26188306 [TBL] [Abstract][Full Text] [Related]
36. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Feng SS; Mei L; Anitha P; Gan CW; Zhou W Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012 [TBL] [Abstract][Full Text] [Related]
37. Blended nanoparticle system based on miscible structurally similar polymers: a safe, simple, targeted, and surprisingly high efficiency vehicle for cancer therapy. Tao W; Zhang J; Zeng X; Liu D; Liu G; Zhu X; Liu Y; Yu Q; Huang L; Mei L Adv Healthc Mater; 2015 Jun; 4(8):1203-14. PubMed ID: 25800699 [TBL] [Abstract][Full Text] [Related]
38. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Prabaharan M; Grailer JJ; Pilla S; Steeber DA; Gong S Biomaterials; 2009 Jun; 30(16):3009-19. PubMed ID: 19250665 [TBL] [Abstract][Full Text] [Related]
39. Progress of drug-loaded polymeric micelles into clinical studies. Cabral H; Kataoka K J Control Release; 2014 Sep; 190():465-76. PubMed ID: 24993430 [TBL] [Abstract][Full Text] [Related]
40. Synthesis, self-assembly, and drug-loading capacity of well-defined cyclodextrin-centered drug-conjugated amphiphilic A(14)B(7) Miktoarm star copolymers based on poly(epsilon-caprolactone) and poly(ethylene glycol). Gou PF; Zhu WP; Shen ZQ Biomacromolecules; 2010 Apr; 11(4):934-43. PubMed ID: 20225892 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]