These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26952500)

  • 41. Polymer-Based Drug Delivery Systems for Cancer.
    Wen R; Umeano AC; Chen P; Farooqi AA
    Crit Rev Ther Drug Carrier Syst; 2018; 35(6):521-553. PubMed ID: 30317968
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and characterization of polyanhydride for local BCNU delivery carriers.
    Kim MS; Seo KS; Seong HS; Cho SH; Lee HB; Hong KD; Kim SK; Khang G
    Biomed Mater Eng; 2005; 15(3):229-38. PubMed ID: 15912003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-assembled star-shaped chlorin-core poly(epsilon-caprolactone)-poly(ethylene glycol) diblock copolymer micelles for dual chemo-photodynamic therapies.
    Peng CL; Shieh MJ; Tsai MH; Chang CC; Lai PS
    Biomaterials; 2008 Sep; 29(26):3599-608. PubMed ID: 18572240
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanoparticles of biodegradable polymers for new-concept chemotherapy.
    Feng SS
    Expert Rev Med Devices; 2004 Sep; 1(1):115-25. PubMed ID: 16293015
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel biomaterial for osteotropic drug nanocarriers: synthesis and biocompatibility evaluation of a PLGA-ALE conjugate.
    Pignatello R; Cenni E; Micieli D; Fotia C; Salerno M; Granchi D; Avnet S; Sarpietro MG; Castelli F; Baldini N
    Nanomedicine (Lond); 2009 Feb; 4(2):161-75. PubMed ID: 19193183
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook.
    Talebian S; Foroughi J; Wade SJ; Vine KL; Dolatshahi-Pirouz A; Mehrali M; Conde J; Wallace GG
    Adv Mater; 2018 Aug; 30(31):e1706665. PubMed ID: 29756237
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging.
    Raveendran S; Poulose AC; Yoshida Y; Maekawa T; Kumar DS
    Carbohydr Polym; 2013 Jan; 91(1):22-32. PubMed ID: 23044101
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect.
    Maeda H; Bharate GY; Daruwalla J
    Eur J Pharm Biopharm; 2009 Mar; 71(3):409-19. PubMed ID: 19070661
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polymer platforms for drug delivery and biomedical imaging.
    Lu ZR; Ye F; Vaidya A
    J Control Release; 2007 Oct; 122(3):269-77. PubMed ID: 17662500
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Perspectives of use of polymer carriers of epidoxorubicin and cyclophosphamide in cancer therapy].
    Zółtowska K; Sobczak M
    Polim Med; 2014; 44(1):51-62. PubMed ID: 24918656
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Study of glycol chitosan-carboxymethyl β-cyclodextrins as anticancer drugs carrier.
    Tan H; Qin F; Chen D; Han S; Lu W; Yao X
    Carbohydr Polym; 2013 Apr; 93(2):679-85. PubMed ID: 23499111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Threaded macromolecules as a versatile framework for biomaterials.
    Tamura A; Yui N
    Chem Commun (Camb); 2014 Nov; 50(88):13433-46. PubMed ID: 25036737
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biocompatible APTES-PEG modified magnetite nanoparticles: effective carriers of antineoplastic agents to ovarian cancer.
    Javid A; Ahmadian S; Saboury AA; Kalantar SM; Rezaei-Zarchi S; Shahzad S
    Appl Biochem Biotechnol; 2014 May; 173(1):36-54. PubMed ID: 24615524
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin.
    Talelli M; Iman M; Varkouhi AK; Rijcken CJ; Schiffelers RM; Etrych T; Ulbrich K; van Nostrum CF; Lammers T; Storm G; Hennink WE
    Biomaterials; 2010 Oct; 31(30):7797-804. PubMed ID: 20673684
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hyperbranched PEG-based supramolecular nanoparticles for acid-responsive targeted drug delivery.
    Chen X; Yao X; Wang C; Chen L; Chen X
    Biomater Sci; 2015 Jun; 3(6):870-8. PubMed ID: 26221847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemically controlled drug delivery based on intrinsically conducting polymers.
    Svirskis D; Travas-Sejdic J; Rodgers A; Garg S
    J Control Release; 2010 Aug; 146(1):6-15. PubMed ID: 20359512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature.
    Yu DH; Lu Q; Xie J; Fang C; Chen HZ
    Biomaterials; 2010 Mar; 31(8):2278-92. PubMed ID: 20053444
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 'Smart' delivery systems for biomolecular therapeutics.
    Stayton PS; El-Sayed ME; Murthy N; Bulmus V; Lackey C; Cheung C; Hoffman AS
    Orthod Craniofac Res; 2005 Aug; 8(3):219-25. PubMed ID: 16022724
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.
    Ge Z; Liu S
    Chem Soc Rev; 2013 Sep; 42(17):7289-325. PubMed ID: 23549663
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Personalizing Biomaterials for Precision Nanomedicine Considering the Local Tissue Microenvironment.
    Oliva N; Unterman S; Zhang Y; Conde J; Song HS; Artzi N
    Adv Healthc Mater; 2015 Aug; 4(11):1584-99. PubMed ID: 25963621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.