These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 26952500)
61. An Acid-Triggered Degradable and Fluorescent Nanoscale Drug Delivery System with Enhanced Cytotoxicity to Cancer Cells. An J; Dai X; Wu Z; Zhao Y; Lu Z; Guo Q; Zhang X; Li C Biomacromolecules; 2015 Aug; 16(8):2444-54. PubMed ID: 26213802 [TBL] [Abstract][Full Text] [Related]
62. Stimuli-responsive polymers for anti-cancer drug delivery. Cheng W; Gu L; Ren W; Liu Y Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():600-8. PubMed ID: 25491870 [TBL] [Abstract][Full Text] [Related]
64. Synthesis, characterization of novel injectable drug carriers and the antitumor efficacy in mice bearing Sarcoma-180 tumor. Guo WX; Huang KX; Tang R; Xu HB J Control Release; 2005 Oct; 107(3):513-22. PubMed ID: 16157412 [TBL] [Abstract][Full Text] [Related]
65. Physicochemical, pharmaceutical and biological approaches toward designing optimized and efficient hydrophobically modified chitosan-based polymeric micelles as a nanocarrier system for targeted delivery of anticancer drugs. Mahmoudzadeh M; Fassihi A; Emami J; Davies NM; Dorkoosh F J Drug Target; 2013 Sep; 21(8):693-709. PubMed ID: 23915108 [TBL] [Abstract][Full Text] [Related]
66. Silica nanotubes decorated by pH-responsive diblock copolymers for controlled drug release. Zhou J; Zhang W; Hong C; Pan C ACS Appl Mater Interfaces; 2015 Feb; 7(6):3618-25. PubMed ID: 25625307 [TBL] [Abstract][Full Text] [Related]
67. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. Sultana S; Khan MR; Kumar M; Kumar S; Ali M J Drug Target; 2013 Feb; 21(2):107-25. PubMed ID: 22873288 [TBL] [Abstract][Full Text] [Related]
68. Surgery-free injectable macroscale biomaterials for local cancer immunotherapy. Lei K; Tang L Biomater Sci; 2019 Feb; 7(3):733-749. PubMed ID: 30637428 [TBL] [Abstract][Full Text] [Related]
69. Current status and prospects of gelatin and its derivatives in oncological applications: Review. Zhang Y; Wang J Int J Biol Macromol; 2024 Aug; 274(Pt 1):133590. PubMed ID: 38996884 [TBL] [Abstract][Full Text] [Related]
70. Implantable systems for drug delivery to the brain. Kaurav H; Kapoor DN Ther Deliv; 2017 Dec; 8(12):1097-1107. PubMed ID: 29125063 [TBL] [Abstract][Full Text] [Related]
71. Engineering Biomaterial-Drug Conjugates for Local and Sustained Chemotherapeutic Delivery. Coburn JM; Kaplan DL Bioconjug Chem; 2015 Jul; 26(7):1212-23. PubMed ID: 25689115 [TBL] [Abstract][Full Text] [Related]
72. Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions. Yan M; Wu S; Wang Y; Liang M; Wang M; Hu W; Yu G; Mao Z; Huang F; Zhou J Adv Mater; 2024 May; 36(21):e2304249. PubMed ID: 37478832 [TBL] [Abstract][Full Text] [Related]
73. Cancer chemotherapy administered by activated carbon particles and liposomes. Hagiwara A; Takahashi T; Oku N Crit Rev Oncol Hematol; 1989; 9(4):319-50. PubMed ID: 2688681 [TBL] [Abstract][Full Text] [Related]
74. Polyanhydrides: an overview. Kumar N; Langer RS; Domb AJ Adv Drug Deliv Rev; 2002 Oct; 54(7):889-910. PubMed ID: 12384314 [TBL] [Abstract][Full Text] [Related]
75. The choice of anti-tumor strategies based on micromolecules or drug loading function of biomaterials. Liu C; Zhang T; Chen L; Chen Y Cancer Lett; 2020 Sep; 487():45-52. PubMed ID: 32474154 [TBL] [Abstract][Full Text] [Related]
76. Polyanhydrides as localized drug delivery carrier: an update. Jain JP; Chitkara D; Kumar N Expert Opin Drug Deliv; 2008 Aug; 5(8):889-907. PubMed ID: 18712998 [TBL] [Abstract][Full Text] [Related]
77. Biomaterials, fibrosis, and the use of drug delivery systems in future antifibrotic strategies. Love RJ; Jones KS Crit Rev Biomed Eng; 2009; 37(3):259-81. PubMed ID: 20402622 [TBL] [Abstract][Full Text] [Related]
78. Biomaterial-Based Implantable Devices for Cancer Therapy. Chew SA; Danti S Adv Healthc Mater; 2017 Jan; 6(2):. PubMed ID: 27886461 [TBL] [Abstract][Full Text] [Related]
79. ProHES: hydroxyethyl starch's transformative role in anticancer drug delivery. Prasher P; Sharma M Future Med Chem; 2024; 16(9):811-816. PubMed ID: 38606535 [No Abstract] [Full Text] [Related]
80. Microbial polysaccharides: An emerging family of natural biomaterials for cancer therapy and diagnostics. Prateeksha ; Sharma VK; Liu X; OyarzĂșn DA; Abdel-Azeem AM; Atanasov AG; Hesham AE; Barik SK; Gupta VK; Singh BN Semin Cancer Biol; 2022 Nov; 86(Pt 3):706-731. PubMed ID: 34062265 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]