These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 26952764)
1. Enzymatic reduction of acetophenone derivatives with a benzil reductase from Pichia glucozyma (KRED1-Pglu): electronic and steric effects on activity and enantioselectivity. Contente ML; Serra I; Palazzolo L; Parravicini C; Gianazza E; Eberini I; Pinto A; Guidi B; Molinari F; Romano D Org Biomol Chem; 2016 Apr; 14(13):3404-8. PubMed ID: 26952764 [TBL] [Abstract][Full Text] [Related]
2. Stereoselective reduction of aromatic ketones by a new ketoreductase from Pichia glucozyma. Contente ML; Serra I; Brambilla M; Eberini I; Gianazza E; De Vitis V; Molinari F; Zambelli P; Romano D Appl Microbiol Biotechnol; 2016 Jan; 100(1):193-201. PubMed ID: 26377422 [TBL] [Abstract][Full Text] [Related]
3. Structural insights into the desymmetrization of bulky 1,2-dicarbonyls through enzymatic monoreduction. Rabuffetti M; Cannazza P; Contente ML; Pinto A; Romano D; Hoyos P; Alcantara AR; Eberini I; Laurenzi T; Gourlay L; Di Pisa F; Molinari F Bioorg Chem; 2021 Mar; 108():104644. PubMed ID: 33486371 [TBL] [Abstract][Full Text] [Related]
4. Inverting the enantioselectivity of a carbonyl reductase via substrate-enzyme docking-guided point mutation. Zhu D; Yang Y; Majkowicz S; Pan TH; Kantardjieff K; Hua L Org Lett; 2008 Feb; 10(4):525-8. PubMed ID: 18205368 [TBL] [Abstract][Full Text] [Related]
5. Highly enantioselective mutant carbonyl reductases created via structure-based site-saturation mutagenesis. Li H; Yang Y; Zhu D; Hua L; Kantardjieff K J Org Chem; 2010 Nov; 75(22):7559-64. PubMed ID: 20964397 [TBL] [Abstract][Full Text] [Related]
6. Reversible control of enantioselectivity by the length of ketone substituent in biocatalytic reduction. Koesoema AA; Sugiyama Y; Sriwong KT; Xu Z; Verina S; Standley DM; Senda M; Senda T; Matsuda T Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9529-9541. PubMed ID: 31720775 [TBL] [Abstract][Full Text] [Related]
7. Enantioselective reduction of acetophenone and its derivatives with a new yeast isolate Candida tropicalis PBR-2 MTCC 5158. Soni P; Banerjee UC Biotechnol J; 2006 Jan; 1(1):80-5. PubMed ID: 16892228 [TBL] [Abstract][Full Text] [Related]
8. Investigation of asymmetric alcohol dehydrogenase (ADH) reduction of acetophenone derivatives: effect of charge density. Naik HG; Yeniad B; Koning CE; Heise A Org Biomol Chem; 2012 Jul; 10(25):4961-7. PubMed ID: 22609978 [TBL] [Abstract][Full Text] [Related]
9. Carbonyl (phenone) reductase in human liver: structure-activity relationship among substrates. Wong JM; Mahon WA; Kalow W; Inaba T Drug Metab Dispos; 1992; 20(3):465-6. PubMed ID: 1355725 [No Abstract] [Full Text] [Related]
10. [Broader substrate specifity of Candida parapsilosis SCR II for catalyzing acetophenone derivatives by site-directed mutagenesis]. Zhang B; Zhang R; Wang S; Xu Y Wei Sheng Wu Xue Bao; 2011 Jun; 51(6):783-8. PubMed ID: 21866703 [TBL] [Abstract][Full Text] [Related]
11. Prelog and anti-Prelog stereoselectivity of two ketoreductases from Candida glabrata. Liang P; Qin B; Mu M; Zhang X; Jia X; You S Biotechnol Lett; 2013 Sep; 35(9):1469-73. PubMed ID: 23690040 [TBL] [Abstract][Full Text] [Related]
12. Candida tenuis xylose reductase catalysed reduction of acetophenones: the effect of ring-substituents on catalytic efficiency. Vogl M; Kratzer R; Nidetzky B; Brecker L Org Biomol Chem; 2011 Aug; 9(16):5863-70. PubMed ID: 21727980 [TBL] [Abstract][Full Text] [Related]
13. Electronic effects of para-substitution on acetophenones in the reaction of rat liver 3alpha-hydroxysteroid dehydrogenase. Uwai K; Konno N; Yasuta Y; Takeshita M Bioorg Med Chem; 2008 Feb; 16(3):1084-9. PubMed ID: 18006320 [TBL] [Abstract][Full Text] [Related]
14. [Biochemical characterization and substrate profile of a highly enantioselective carbonyl reductase from Pichia pastoris]. Tian L; Liu W; Chen X; Feng J; Yang H; Wu Q; Zhu D; Ma Y Sheng Wu Gong Cheng Xue Bao; 2013 Feb; 29(2):169-79. PubMed ID: 23697162 [TBL] [Abstract][Full Text] [Related]
15. Carbonyl reductase SCRII from Candida parapsilosis catalyzes anti-Prelog reaction to (S)-1-phenyl-1,2-ethanediol with absolute stereochemical selectivity. Zhang R; Geng Y; Xu Y; Zhang W; Wang S; Xiao R Bioresour Technol; 2011 Jan; 102(2):483-9. PubMed ID: 20833539 [TBL] [Abstract][Full Text] [Related]
16. Purification and characterization of acetophenone reductase with excellent enantioselectivity from Geotrichum candidum NBRC 4597. Nakata Y; Fukae T; Kanamori R; Kanamaru S; Matsuda T Appl Microbiol Biotechnol; 2010 Mar; 86(2):625-31. PubMed ID: 19908037 [TBL] [Abstract][Full Text] [Related]
17. Highly enantiomeric reduction of acetophenone and its derivatives by locally isolated Rhodotorula glutinis. Zilbeyaz K; Kurbanoglu EB Chirality; 2010 Oct; 22(9):849-54. PubMed ID: 20803750 [TBL] [Abstract][Full Text] [Related]
18. Structure-guided stereoselectivity inversion of a short-chain dehydrogenase/reductase towards halogenated acetophenones. Li A; Ye L; Yang X; Yang C; Gu J; Yu H Chem Commun (Camb); 2016 May; 52(37):6284-7. PubMed ID: 27086576 [TBL] [Abstract][Full Text] [Related]
19. The stereoselectivity and catalytic properties of Xanthobacter autotrophicus 2-[(R)-2-Hydroxypropylthio]ethanesulfonate dehydrogenase are controlled by interactions between C-terminal arginine residues and the sulfonate of coenzyme M. Clark DD; Boyd JM; Ensign SA Biochemistry; 2004 Jun; 43(21):6763-71. PubMed ID: 15157110 [TBL] [Abstract][Full Text] [Related]
20. Stereoselective ketone reduction by a carbonyl reductase from Sporobolomyces salmonicolor. Substrate specificity, enantioselectivity and enzyme-substrate docking studies. Zhu D; Yang Y; Buynak JD; Hua L Org Biomol Chem; 2006 Jul; 4(14):2690-5. PubMed ID: 16826293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]