These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 26952844)
1. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement. Cho J; Gonzalez-Lepera C; Manohar N; Kerr M; Krishnan S; Cho SH Phys Med Biol; 2016 Mar; 61(6):2562-81. PubMed ID: 26952844 [TBL] [Abstract][Full Text] [Related]
2. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Lin Y; McMahon SJ; Scarpelli M; Paganetti H; Schuemann J Phys Med Biol; 2014 Dec; 59(24):7675-89. PubMed ID: 25415297 [TBL] [Abstract][Full Text] [Related]
3. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons. Lin Y; Paganetti H; McMahon SJ; Schuemann J Med Phys; 2015 Oct; 42(10):5890-902. PubMed ID: 26429263 [TBL] [Abstract][Full Text] [Related]
4. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Jones BL; Krishnan S; Cho SH Med Phys; 2010 Jul; 37(7):3809-16. PubMed ID: 20831089 [TBL] [Abstract][Full Text] [Related]
5. Gold nanoparticle enhanced proton therapy: A Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield. Peukert D; Kempson I; Douglass M; Bezak E Med Phys; 2020 Feb; 47(2):651-661. PubMed ID: 31725910 [TBL] [Abstract][Full Text] [Related]
6. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737 [TBL] [Abstract][Full Text] [Related]
7. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Li WB; Belchior A; Beuve M; Chen YZ; Di Maria S; Friedland W; Gervais B; Heide B; Hocine N; Ipatov A; Klapproth AP; Li CY; Li JL; Multhoff G; Poignant F; Qiu R; Rabus H; Rudek B; Schuemann J; Stangl S; Testa E; Villagrasa C; Xie WZ; Zhang YB Phys Med; 2020 Jan; 69():147-163. PubMed ID: 31918367 [TBL] [Abstract][Full Text] [Related]
8. Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams. Rudek B; McNamara A; Ramos-Méndez J; Byrne H; Kuncic Z; Schuemann J Phys Med Biol; 2019 Aug; 64(17):175005. PubMed ID: 31295730 [TBL] [Abstract][Full Text] [Related]
9. Experimental measurements validate the use of the binary encounter approximation model to accurately compute proton induced dose and radiolysis enhancement from gold nanoparticles. Hespeels F; Lucas S; Tabarrant T; Scifoni E; Kraemer M; Chêne G; Strivay D; Tran HN; Heuskin AC Phys Med Biol; 2019 Mar; 64(6):065014. PubMed ID: 30731439 [TBL] [Abstract][Full Text] [Related]
10. Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy. Lin Y; McMahon SJ; Paganetti H; Schuemann J Phys Med Biol; 2015 May; 60(10):4149-68. PubMed ID: 25953956 [TBL] [Abstract][Full Text] [Related]
11. Nanoscale gold nanoparticle (GNP)-laden tumor cell model and its use for estimation of intracellular dose from GNP-induced secondary electrons. Jayarathna S; Kaphle A; Krishnan S; Cho SH Med Phys; 2024 Sep; 51(9):6276-6291. PubMed ID: 38935922 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Martínez-Rovira I; Prezado Y Med Phys; 2015 Nov; 42(11):6703-10. PubMed ID: 26520760 [TBL] [Abstract][Full Text] [Related]
13. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Xie WZ; Friedland W; Li WB; Li CY; Oeh U; Qiu R; Li JL; Hoeschen C Phys Med Biol; 2015 Aug; 60(16):6195-212. PubMed ID: 26226203 [TBL] [Abstract][Full Text] [Related]
14. Backscattered electron emission after proton impact on gold nanoparticles with and without polymer shell coating. Hespeels F; Heuskin AC; Tabarrant T; Scifoni E; Kraemer M; Chêne G; Strivay D; Lucas S Phys Med Biol; 2019 Jun; 64(12):125007. PubMed ID: 30986778 [TBL] [Abstract][Full Text] [Related]
15. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Leung MK; Chow JC; Chithrani BD; Lee MJ; Oms B; Jaffray DA Med Phys; 2011 Feb; 38(2):624-31. PubMed ID: 21452700 [TBL] [Abstract][Full Text] [Related]
16. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers. Cho J; Wang M; Gonzalez-Lepera C; Mawlawi O; Cho SH Med Phys; 2016 Aug; 43(8):4775. PubMed ID: 27487895 [TBL] [Abstract][Full Text] [Related]
17. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Jeynes JC; Merchant MJ; Spindler A; Wera AC; Kirkby KJ Phys Med Biol; 2014 Nov; 59(21):6431-43. PubMed ID: 25296027 [TBL] [Abstract][Full Text] [Related]
18. Influence of gold nanoparticles embedded in water on nanodosimetry for keV photon irradiation. Poignant F; Monini C; Testa É; Beuve M Med Phys; 2021 Apr; 48(4):1874-1883. PubMed ID: 33150620 [TBL] [Abstract][Full Text] [Related]
19. Dosimetric consequences of gold nanoparticle clustering during photon irradiation. Kirkby C; Koger B; Suchowerska N; McKenzie DR Med Phys; 2017 Dec; 44(12):6560-6569. PubMed ID: 28994464 [TBL] [Abstract][Full Text] [Related]
20. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes. Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]