BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 26953525)

  • 1. Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production.
    Westman JO; Mapelli V; Taherzadeh MJ; Franzén CJ
    Appl Environ Microbiol; 2014 Nov; 80(22):6908-18. PubMed ID: 25172866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.
    Oshoma CE; Greetham D; Louis EJ; Smart KA; Phister TG; Powell C; Du C
    PLoS One; 2015; 10(8):e0135626. PubMed ID: 26284784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance.
    Sardi M; Rovinskiy N; Zhang Y; Gasch AP
    Appl Environ Microbiol; 2016 Oct; 82(19):5838-49. PubMed ID: 27451446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From
    Topaloğlu A; Esen Ö; Turanlı-Yıldız B; Arslan M; Çakar ZP
    J Fungi (Basel); 2023 Sep; 9(10):. PubMed ID: 37888240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth inhibition of S. cerevisiae, B. subtilis, and E. coli by lignocellulosic and fermentation products.
    Pereira JP; Verheijen PJ; Straathof AJ
    Appl Microbiol Biotechnol; 2016 Nov; 100(21):9069-9080. PubMed ID: 27262569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms.
    Cray JA; Stevenson A; Ball P; Bankar SB; Eleutherio EC; Ezeji TC; Singhal RS; Thevelein JM; Timson DJ; Hallsworth JE
    Curr Opin Biotechnol; 2015 Jun; 33():228-59. PubMed ID: 25841213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of glycolaldehyde phosphate from glycolaldehyde in aqueous solution.
    Krishnamurthy R; Arrhenius G; Eschenmoser A
    Orig Life Evol Biosph; 1999 Aug; 29(4):333-54. PubMed ID: 10472624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPRi screens reveal genes modulating yeast growth in lignocellulose hydrolysate.
    Gutmann F; Jann C; Pereira F; Johansson A; Steinmetz LM; Patil KR
    Biotechnol Biofuels; 2021 Feb; 14(1):41. PubMed ID: 33568224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters.
    Jordan P; Choe JY; Boles E; Oreb M
    Sci Rep; 2016 Mar; 6():23502. PubMed ID: 26996892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioupgrading of the aqueous phase of pyrolysis oil from lignocellulosic biomass: a platform for renewable chemicals and fuels from the whole fraction of biomass.
    Ashoor S; Khang TU; Lee YH; Hyung JS; Choi SY; Lim SE; Lee J; Park SJ; Na JG
    Bioresour Bioprocess; 2023 May; 10(1):34. PubMed ID: 38647900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repurposing of waste PET by microbial biotransformation to functionalized materials for additive manufacturing.
    Kolitha BS; Jayasekara SK; Tannenbaum R; Jasiuk IM; Jayakody LN
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37248049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing of Biomass Prior to Hydrogen Fermentation and Post-Fermentative Broth Management.
    Honarmandrad Z; Kucharska K; Gębicki J
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on enzymes and pathways for manufacturing polyhydroxybutyrate from lignocellulosic materials.
    Jaffur N; Jeetah P; Kumar G
    3 Biotech; 2021 Nov; 11(11):483. PubMed ID: 34790507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reasons for 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde resistance in Saccharomyces cerevisiae: current state of knowledge and perspectives for further improvements.
    Liu ZL
    Appl Microbiol Biotechnol; 2021 Apr; 105(8):2991-3007. PubMed ID: 33830300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae.
    Jayakody LN; Jin YS
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2675-2692. PubMed ID: 33743026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium Acetate Responses in
    Watcharawipas A; Watanabe D; Takagi H
    Front Microbiol; 2018; 9():2495. PubMed ID: 30459728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and detoxification of glycolaldehyde, an unattended bioethanol fermentation inhibitor.
    Jayakody LN; Ferdouse J; Hayashi N; Kitagaki H
    Crit Rev Biotechnol; 2017 Mar; 37(2):177-189. PubMed ID: 26953525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity.
    Jayakody LN; Hayashi N; Kitagaki H
    Biotechnol Lett; 2011 Feb; 33(2):285-92. PubMed ID: 20960220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.
    Jayakody LN; Horie K; Hayashi N; Kitagaki H
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.