These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26953596)

  • 1. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.
    Jin H; Qian J; Zhou L; Yuan J; Huang H; Wang Y; Tang WM; Chan HL
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9088-96. PubMed ID: 26953596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous manganese dioxide ink for paper-based capacitive energy storage devices.
    Qian J; Jin H; Chen B; Lin M; Lu W; Tang WM; Xiong W; Chan LW; Lau SP; Yuan J
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6800-3. PubMed ID: 25891235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors.
    Zhai T; Wang F; Yu M; Xie S; Liang C; Li C; Xiao F; Tang R; Wu Q; Lu X; Tong Y
    Nanoscale; 2013 Aug; 5(15):6790-6. PubMed ID: 23765341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance MnO
    Xu L; Jia M; Li Y; Jin X; Zhang F
    Sci Rep; 2017 Oct; 7(1):12857. PubMed ID: 28993627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes.
    Tang P; Han L; Zhang L
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10506-15. PubMed ID: 24905133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piezoelectric-driven self-charging supercapacitor power cell.
    Ramadoss A; Saravanakumar B; Lee SW; Kim YS; Kim SJ; Wang ZL
    ACS Nano; 2015 Apr; 9(4):4337-45. PubMed ID: 25794521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems.
    Yang P; Xiao X; Li Y; Ding Y; Qiang P; Tan X; Mai W; Lin Z; Wu W; Li T; Jin H; Liu P; Zhou J; Wong CP; Wang ZL
    ACS Nano; 2013 Mar; 7(3):2617-26. PubMed ID: 23368853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Based on 3D Ni(OH)
    Shen J; Li X; Wan L; Liang K; Tay BK; Kong L; Yan X
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):668-676. PubMed ID: 27936554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-Standing Black Phosphorus Thin Films for Flexible Quasi-Solid-State Micro-Supercapacitors with High Volumetric Power and Energy Density.
    Yang J; Pan Z; Yu Q; Zhang Q; Ding X; Shi X; Qiu Y; Zhang K; Wang J; Zhang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5938-5946. PubMed ID: 30648840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of high power and energy density microsphere silicon carbide-MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors.
    Kim M; Kim J
    Phys Chem Chem Phys; 2014 Jun; 16(23):11323-36. PubMed ID: 24789348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.
    Yang C; Zhou M; Xu Q
    Phys Chem Chem Phys; 2013 Dec; 15(45):19730-40. PubMed ID: 24141452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Conductive Mo
    Shi M; Zhao L; Song X; Liu J; Zhang P; Gao L
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32460-32467. PubMed ID: 27808498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics.
    Chen W; He Y; Li X; Zhou J; Zhang Z; Zhao C; Gong C; Li S; Pan X; Xie E
    Nanoscale; 2013 Dec; 5(23):11733-41. PubMed ID: 24114203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Safe Flexible Self-Powered Wristband System by Integrating Defective MnO
    Zhao J; Xu Z; Zhou Z; Xi S; Xia Y; Zhang Q; Huang L; Mei L; Jiang Y; Gao J; Zeng Z; Tan C
    ACS Nano; 2021 Jun; 15(6):10597-10608. PubMed ID: 34037383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.
    Yan J; Khoo E; Sumboja A; Lee PS
    ACS Nano; 2010 Jul; 4(7):4247-55. PubMed ID: 20593844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability.
    Wang Z; Li Z; Feng J; Yan S; Luo W; Liu J; Yu T; Zou Z
    Phys Chem Chem Phys; 2014 May; 16(18):8521-8. PubMed ID: 24668150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor.
    Liu Y; Miao X; Fang J; Zhang X; Chen S; Li W; Feng W; Chen Y; Wang W; Zhang Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5251-60. PubMed ID: 26842681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochromic Asymmetric Supercapacitor Windows Enable Direct Determination of Energy Status by the Naked Eye.
    Zhong Y; Chai Z; Liang Z; Sun P; Xie W; Zhao C; Mai W
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34085-34092. PubMed ID: 28884570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Standing Metallic Mesh with MnO
    Liu YH; Jiang ZY; Xu JL
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24047-24056. PubMed ID: 31192577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.