These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26953651)

  • 1. Estimation from moments measurements for amyloid depolymerisation.
    Armiento A; Doumic M; Moireau P; Rezaei H
    J Theor Biol; 2016 May; 397():68-88. PubMed ID: 26953651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural, morphological, and functional diversity of amyloid oligomers.
    Breydo L; Uversky VN
    FEBS Lett; 2015 Sep; 589(19 Pt A):2640-8. PubMed ID: 26188543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloids, prions and the inherent infectious nature of misfolded protein aggregates.
    Soto C; Estrada L; Castilla J
    Trends Biochem Sci; 2006 Mar; 31(3):150-5. PubMed ID: 16473510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining the pathway of worm-like amyloid fibril formation by the mouse prion protein by delineation of the productive and unproductive oligomerization reactions.
    Jain S; Udgaonkar JB
    Biochemistry; 2011 Feb; 50(7):1153-61. PubMed ID: 21214263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of polymerization shed light on the mechanisms that lead to multiple amyloid structures of the prion protein.
    Alvarez-Martinez MT; Fontes P; Zomosa-Signoret V; Arnaud JD; Hingant E; Pujo-Menjouet L; Liautard JP
    Biochim Biophys Acta; 2011 Oct; 1814(10):1305-17. PubMed ID: 21683809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The native state of prion protein (PrP) directly inhibits formation of PrP-amyloid fibrils in vitro.
    Honda RP; Kuwata K
    Sci Rep; 2017 Apr; 7(1):562. PubMed ID: 28373719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the structural core and of conformational heterogeneity during the conversion of oligomers of the mouse prion protein to worm-like amyloid fibrils.
    Singh J; Sabareesan AT; Mathew MK; Udgaonkar JB
    J Mol Biol; 2012 Oct; 423(2):217-31. PubMed ID: 22789566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of monomer transfer between two structurally distinct PrP oligomers.
    Armiento A; Moireau P; Martin D; Lepejova N; Doumic M; Rezaei H
    PLoS One; 2017; 12(7):e0180538. PubMed ID: 28746342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein misfolding and neurodegeneration.
    Soto C; Estrada LD
    Arch Neurol; 2008 Feb; 65(2):184-9. PubMed ID: 18268186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitting yeast and mammalian prion aggregation kinetic data with the Finke-Watzky two-step model of nucleation and autocatalytic growth.
    Watzky MA; Morris AM; Ross ED; Finke RG
    Biochemistry; 2008 Oct; 47(40):10790-800. PubMed ID: 18785757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein folding and aggregation: two sides of the same coin in the condensation of proteins revealed by pressure studies.
    Silva JL; Cordeiro Y; Foguel D
    Biochim Biophys Acta; 2006 Mar; 1764(3):443-51. PubMed ID: 16480935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration.
    Costanzo M; Zurzolo C
    Biochem J; 2013 May; 452(1):1-17. PubMed ID: 23614720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion.
    Kumar S; Mohanty SK; Udgaonkar JB
    J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic Analysis of Amyloid Formation.
    Meisl G; Michaels TCT; Linse S; Knowles TPJ
    Methods Mol Biol; 2018; 1779():181-196. PubMed ID: 29886534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt-induced modulation of the pathway of amyloid fibril formation by the mouse prion protein.
    Jain S; Udgaonkar JB
    Biochemistry; 2010 Sep; 49(35):7615-24. PubMed ID: 20712298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation.
    Lorenzen N; Nielsen SB; Buell AK; Kaspersen JD; Arosio P; Vad BS; Paslawski W; Christiansen G; Valnickova-Hansen Z; Andreasen M; Enghild JJ; Pedersen JS; Dobson CM; Knowles TP; Otzen DE
    J Am Chem Soc; 2014 Mar; 136(10):3859-68. PubMed ID: 24527756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of prion polymerization and toxicity by rationally designed peptidomimetics.
    Srivastava A; Sharma S; Sadanandan S; Gupta S; Singh J; Gupta S; Haridas V; Kundu B
    Biochem J; 2017 Jan; 474(1):123-147. PubMed ID: 27803245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural properties and dynamic behavior of nonfibrillar oligomers formed by PrP(106-126).
    Walsh P; Neudecker P; Sharpe S
    J Am Chem Soc; 2010 Jun; 132(22):7684-95. PubMed ID: 20465257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prions and chaperones: friends or foes?
    Stroylova YY; Kiselev GG; Schmalhausen EV; Muronetz VI
    Biochemistry (Mosc); 2014 Aug; 79(8):761-75. PubMed ID: 25365486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.