These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 26953664)
1. Micro-CT as a Tool to Investigate the Efficacy of Tetramethylpyrazine in a Rat Spinal Cord Injury Model. Hu J; Cao Y; Wu T; Li D; Lu H Spine (Phila Pa 1976); 2016 Aug; 41(16):1272-1278. PubMed ID: 26953664 [TBL] [Abstract][Full Text] [Related]
2. Tetramethylpyrazine Facilitates Functional Recovery after Spinal Cord Injury by Inhibiting MMP2, MMP9, and Vascular Endothelial Cell Apoptosis. Hu JZ; Wang XK; Cao Y; Li DZ; Wu TD; Zhang T; Xu DQ; Lu HB Curr Neurovasc Res; 2017; 14(2):110-116. PubMed ID: 28294065 [TBL] [Abstract][Full Text] [Related]
3. Synchrotron radiation micro-CT as a novel tool to evaluate the effect of agomir-210 in a rat spinal cord injury model. Cao Y; Wu TD; Wu H; Lang Y; Li DZ; Ni SF; Lu HB; Hu JZ Brain Res; 2017 Jan; 1655():55-65. PubMed ID: 27847197 [TBL] [Abstract][Full Text] [Related]
4. Tetramethylpyrazine accelerates the function recovery of traumatic spinal cord in rat model by attenuating inflammation. Hu JZ; Huang JH; Xiao ZM; Li JH; Li XM; Lu HB J Neurol Sci; 2013 Jan; 324(1-2):94-9. PubMed ID: 23140983 [TBL] [Abstract][Full Text] [Related]
5. Tetramethylpyrazine enhances functional recovery after contusion spinal cord injury by modulation of MicroRNA-21, FasL, PDCD4 and PTEN expression. Huang JH; Cao Y; Zeng L; Wang G; Cao M; Lu HB; Hu JZ Brain Res; 2016 Oct; 1648(Pt A):35-45. PubMed ID: 27431939 [TBL] [Abstract][Full Text] [Related]
6. Tetramethylpyrazine alleviates neural apoptosis in injured spinal cord via the downregulation of miR-214-3p. Fan Y; Wu Y Biomed Pharmacother; 2017 Oct; 94():827-833. PubMed ID: 28802236 [TBL] [Abstract][Full Text] [Related]
7. Tetramethylpyrazine improves the recovery of spinal cord injury via Akt/Nrf2/HO-1 pathway. Wang C; Wang P; Zeng W; Li W Bioorg Med Chem Lett; 2016 Feb; 26(4):1287-91. PubMed ID: 26786697 [TBL] [Abstract][Full Text] [Related]
8. Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat. Sonmez E; Kabatas S; Ozen O; Karabay G; Turkoglu S; Ogus E; Yilmaz C; Caner H; Altinors N Spine (Phila Pa 1976); 2013 Jul; 38(15):1253-9. PubMed ID: 23370685 [TBL] [Abstract][Full Text] [Related]
9. The Neuroprotective Effect of Tetramethylpyrazine Against Contusive Spinal Cord Injury by Activating PGC-1α in Rats. Hu J; Lang Y; Cao Y; Zhang T; Lu H Neurochem Res; 2015 Jul; 40(7):1393-401. PubMed ID: 25981953 [TBL] [Abstract][Full Text] [Related]
10. Synchrotron Radiation Imaging Reveals the Role of Estrogen in Promoting Angiogenesis After Acute Spinal Cord Injury in Rats. Ni S; Cao Y; Jiang L; Luo Z; Lu H; Hu J; Wu T Spine (Phila Pa 1976); 2018 Sep; 43(18):1241-1249. PubMed ID: 29529001 [TBL] [Abstract][Full Text] [Related]
12. Acellular Spinal Cord Scaffold Implantation Promotes Vascular Remodeling with Sustained Delivery of VEGF in a Rat Spinal Cord Hemisection Model. Xu ZX; Zhang LQ; Wang CS; Chen RS; Li GS; Guo Y; Xu WH Curr Neurovasc Res; 2017; 14(3):274-289. PubMed ID: 28721809 [TBL] [Abstract][Full Text] [Related]
13. Tetramethylpyrazine alleviates ferroptosis and promotes functional recovery in spinal cord injury by regulating GPX4/ACSL4. Liu G; Deng B; Huo L; Fan X; Bai H; Zhao Y; Xu L; Gao F; Mu X Eur J Pharmacol; 2024 Aug; 977():176710. PubMed ID: 38843947 [TBL] [Abstract][Full Text] [Related]
14. [Experimental study of tetramethylpyrazine-loaded electroconductive hydrogel on angiogenesis and neuroprotection after spinal cord injury]. Deng B; Jiang S; Liu G; Li X; Bai H; Huo L; Xu J; Xu L; Mu X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2024 Feb; 38(2):189-197. PubMed ID: 38385232 [TBL] [Abstract][Full Text] [Related]
15. Neuroprotective effects of tetramethylpyrazine on spinal cord injury-Related neuroinflammation mediated by P2X7R/NLRP3 interaction. Fan X; Zang C; Lao K; Mu XH; Dai S Eur J Pharmacol; 2024 Feb; 964():176267. PubMed ID: 38072038 [TBL] [Abstract][Full Text] [Related]
16. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury. Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940 [TBL] [Abstract][Full Text] [Related]
17. Effects of tetramethylpyrazine treatment in a rat model of spinal cord injury: A systematic review and meta-analysis. Li G; Sng KS; Shu B; Wang YJ; Yao M; Cui XJ Eur J Pharmacol; 2023 Apr; 945():175524. PubMed ID: 36803629 [TBL] [Abstract][Full Text] [Related]
18. Erythropoietin effect on sensorimotor recovery after contusive spinal cord injury: an electrophysiological study in rats. Cerri G; Montagna M; Madaschi L; Merli D; Borroni P; Baldissera F; Gorio A Neuroscience; 2012 Sep; 219():290-301. PubMed ID: 22659566 [TBL] [Abstract][Full Text] [Related]
19. Galantamine improves functional recovery and reduces lesion size in a rat model of spinal cord injury. Sperling LE; Pires Reis K; Nicola F; Euzebio Teixeira C; Gulielmin Didó G; Garrido Dos Santos M; Konrath E; Netto CA; Pranke P Brain Res; 2019 Dec; 1724():146424. PubMed ID: 31472112 [TBL] [Abstract][Full Text] [Related]
20. Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury. Lee JS; Yang CC; Kuo YM; Sze CI; Hsu JY; Huang YH; Tzeng SF; Tsai CL; Chen HH; Jou IM Spine (Phila Pa 1976); 2012 Jan; 37(1):10-7. PubMed ID: 22024901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]