BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 26953864)

  • 1. High-performance graphene-based supercapacitors made by a scalable blade-coating approach.
    Wang B; Liu J; Mirri F; Pasquali M; Motta N; Holmes JW
    Nanotechnology; 2016 Apr; 27(16):165402. PubMed ID: 26953864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Graphene Oxide Liquid Crystals in Hydrothermal Reduction and Supercapacitor Performance.
    Wang B; Liu J; Zhao Y; Li Y; Xian W; Amjadipour M; MacLeod J; Motta N
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22316-23. PubMed ID: 27529434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercapacitor Electrodes with Remarkable Specific Capacitance Converted from Hybrid Graphene Oxide/NaCl/Urea Films.
    Zhao Y; Liu J; Wang B; Sha J; Li Y; Zheng D; Amjadipour M; MacLeod J; Motta N
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22588-22596. PubMed ID: 28609091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector.
    Notarianni M; Liu J; Mirri F; Pasquali M; Motta N
    Nanotechnology; 2014 Oct; 25(43):435405. PubMed ID: 25301789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile and Scalable Synthesis Method for High-Quality Few-Layer Graphene through Solution-Based Exfoliation of Graphite.
    Wee BH; Wu TF; Hong JD
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4548-4557. PubMed ID: 28094493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes.
    Kou L; Liu Z; Huang T; Zheng B; Tian Z; Deng Z; Gao C
    Nanoscale; 2015 Mar; 7(9):4080-7. PubMed ID: 25660705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-Fiber-Based Supercapacitors Favor N-Methyl-2-pyrrolidone/Ethyl Acetate as the Spinning Solvent/Coagulant Combination.
    He N; Pan Q; Liu Y; Gao W
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24568-24576. PubMed ID: 28661648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CuO nanosheets/rGO hybrid lamellar films with enhanced capacitance.
    Liu Y; Ying Y; Mao Y; Gu L; Wang Y; Peng X
    Nanoscale; 2013 Oct; 5(19):9134-40. PubMed ID: 23913017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the capacitive properties of reduced graphene oxide.
    Zhang W; Zhang Y; Tian Y; Yang Z; Xiao Q; Guo X; Jing L; Zhao Y; Yan Y; Feng J; Sun K
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2248-54. PubMed ID: 24456342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient preparation of large-area graphene oxide sheets for transparent conductive films.
    Zhao J; Pei S; Ren W; Gao L; Cheng HM
    ACS Nano; 2010 Sep; 4(9):5245-52. PubMed ID: 20815368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film.
    Chen J; Wang Y; Cao J; Liu Y; Zhou Y; Ouyang JH; Jia D
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19831-19842. PubMed ID: 28537372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous NiCo2O4 nanosheets/reduced graphene oxide composite: facile synthesis and excellent capacitive performance for supercapacitors.
    Ma L; Shen X; Ji Z; Cai X; Zhu G; Chen K
    J Colloid Interface Sci; 2015 Feb; 440():211-8. PubMed ID: 25460708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freestanding Laser-Assisted Reduced Graphene Oxide Microribbon Textile Electrode Fabricated on a Liquid Surface for Supercapacitors and Breath Sensors.
    Shi HH; Jang S; Naguib HE
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27183-27191. PubMed ID: 31276359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films.
    Min K; Han TH; Kim J; Jung J; Jung C; Hong SM; Koo CM
    J Colloid Interface Sci; 2012 Oct; 383(1):36-42. PubMed ID: 22795947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nylon-Graphene Composite Nonwovens as Monolithic Conductive or Capacitive Fabrics.
    Pan Q; Shim E; Pourdeyhimi B; Gao W
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8308-8316. PubMed ID: 28194943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitated ion transport in all-solid-state flexible supercapacitors.
    Choi BG; Hong J; Hong WH; Hammond PT; Park H
    ACS Nano; 2011 Sep; 5(9):7205-13. PubMed ID: 21823578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.