These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 26954019)
21. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes. San Lucas FA; Fowler J; Chang K; Kopetz S; Vilar E; Scheet P Mol Cancer Ther; 2014 Dec; 13(12):3230-40. PubMed ID: 25349306 [TBL] [Abstract][Full Text] [Related]
22. Prioritizing therapeutics for lung cancer: an integrative meta-analysis of cancer gene signatures and chemogenomic data. Fortney K; Griesman J; Kotlyar M; Pastrello C; Angeli M; Sound-Tsao M; Jurisica I PLoS Comput Biol; 2015 Mar; 11(3):e1004068. PubMed ID: 25786242 [TBL] [Abstract][Full Text] [Related]
23. Drug Selection in the Genomic Age: Application of the Coexpression Extrapolation Principle for Drug Repositioning in Cancer Therapy. Gustafson DL; Fowles JS; Brown KC; Theodorescu D Assay Drug Dev Technol; 2015 Dec; 13(10):623-7. PubMed ID: 26690765 [TBL] [Abstract][Full Text] [Related]
24. Systematic analysis of genotype-specific drug responses in cancer. Kim N; He N; Kim C; Zhang F; Lu Y; Yu Q; Stemke-Hale K; Greshock J; Wooster R; Yoon S; Mills GB Int J Cancer; 2012 Nov; 131(10):2456-64. PubMed ID: 22422301 [TBL] [Abstract][Full Text] [Related]
25. Systematic drug perturbations on cancer cells reveal diverse exit paths from proliferative state. Zhou JX; Isik Z; Xiao C; Rubin I; Kauffman SA; Schroeder M; Huang S Oncotarget; 2016 Feb; 7(7):7415-25. PubMed ID: 26871731 [TBL] [Abstract][Full Text] [Related]
26. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
27. A Semi-Supervised Approach for Refining Transcriptional Signatures of Drug Response and Repositioning Predictions. Iorio F; Shrestha RL; Levin N; Boilot V; Garnett MJ; Saez-Rodriguez J; Draviam VM PLoS One; 2015; 10(10):e0139446. PubMed ID: 26452147 [TBL] [Abstract][Full Text] [Related]
28. Towards precision medicine-based therapies for glioblastoma: interrogating human disease genomics and mouse phenotypes. Chen Y; Gao Z; Wang B; Xu R BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):516. PubMed ID: 27557118 [TBL] [Abstract][Full Text] [Related]
29. Genome-Scale Signatures of Gene Interaction from Compound Screens Predict Clinical Efficacy of Targeted Cancer Therapies. Jiang P; Lee W; Li X; Johnson C; Liu JS; Brown M; Aster JC; Liu XS Cell Syst; 2018 Mar; 6(3):343-354.e5. PubMed ID: 29428415 [TBL] [Abstract][Full Text] [Related]
30. Meta analysis of gene expression changes upon treatment of A549 cells with anti-cancer drugs to identify universal responses. Agrawal M; Gadgil M Comput Biol Med; 2012 Nov; 42(11):1141-9. PubMed ID: 23063289 [TBL] [Abstract][Full Text] [Related]
31. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia. Covell DG PLoS One; 2015; 10(7):e0127433. PubMed ID: 26132924 [TBL] [Abstract][Full Text] [Related]
32. Integrative analysis of lung development-cancer expression associations reveals the roles of signatures with inverse expression patterns. Zhang C; Li C; Xu Y; Feng L; Shang D; Yang X; Han J; Sun Z; Li Y; Li X Mol Biosyst; 2015 May; 11(5):1271-84. PubMed ID: 25720795 [TBL] [Abstract][Full Text] [Related]
33. A Review of Drug Repositioning Based Chemical-induced Cell Line Expression Data. Wang F; Lei X; Wu FX Curr Med Chem; 2020; 27(32):5340-5350. PubMed ID: 30381060 [TBL] [Abstract][Full Text] [Related]
34. Discovery of drug mode of action and drug repositioning from transcriptional responses. Iorio F; Bosotti R; Scacheri E; Belcastro V; Mithbaokar P; Ferriero R; Murino L; Tagliaferri R; Brunetti-Pierri N; Isacchi A; di Bernardo D Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14621-6. PubMed ID: 20679242 [TBL] [Abstract][Full Text] [Related]
35. Molecular Network-Based Drug Prediction in Thyroid Cancer. Xu X; Long H; Xi B; Ji B; Li Z; Dang Y; Jiang C; Yao Y; Yang J Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30641858 [TBL] [Abstract][Full Text] [Related]
36. Integrated analysis identifies interaction patterns between small molecules and pathways. Li Y; Li W; Chen X; Jiang H; Sun J; Chen H; Lv S Biomed Res Int; 2014; 2014():931825. PubMed ID: 25114931 [TBL] [Abstract][Full Text] [Related]
37. An Application of Computational Drug Repurposing Based on Transcriptomic Signatures. Karatzas E; Kolios G; Spyrou GM Methods Mol Biol; 2019; 1903():149-177. PubMed ID: 30547441 [TBL] [Abstract][Full Text] [Related]
38. Disulfiram when Combined with Copper Enhances the Therapeutic Effects of Temozolomide for the Treatment of Glioblastoma. Lun X; Wells JC; Grinshtein N; King JC; Hao X; Dang NH; Wang X; Aman A; Uehling D; Datti A; Wrana JL; Easaw JC; Luchman A; Weiss S; Cairncross JG; Kaplan DR; Robbins SM; Senger DL Clin Cancer Res; 2016 Aug; 22(15):3860-75. PubMed ID: 27006494 [TBL] [Abstract][Full Text] [Related]
39. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration. Wang Y; Yang Y; Chen S; Wang J Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890 [TBL] [Abstract][Full Text] [Related]
40. MD-Miner: a network-based approach for personalized drug repositioning. Wu H; Miller E; Wijegunawardana D; Regan K; Payne PRO; Li F BMC Syst Biol; 2017 Oct; 11(Suppl 5):86. PubMed ID: 28984195 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]