These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 26954019)
41. Pathway-Based Drug Repositioning for Cancers: Computational Prediction and Experimental Validation. Iwata M; Hirose L; Kohara H; Liao J; Sawada R; Akiyoshi S; Tani K; Yamanishi Y J Med Chem; 2018 Nov; 61(21):9583-9595. PubMed ID: 30371064 [TBL] [Abstract][Full Text] [Related]
42. Combinatorial high-throughput experimental and bioinformatic approach identifies molecular pathways linked with the sensitivity to anticancer target drugs. Venkova L; Aliper A; Suntsova M; Kholodenko R; Shepelin D; Borisov N; Malakhova G; Vasilov R; Roumiantsev S; Zhavoronkov A; Buzdin A Oncotarget; 2015 Sep; 6(29):27227-38. PubMed ID: 26317900 [TBL] [Abstract][Full Text] [Related]
43. Connecting gene expression data from connectivity map and in silico target predictions for small molecule mechanism-of-action analysis. Ravindranath AC; Perualila-Tan N; Kasim A; Drakakis G; Liggi S; Brewerton SC; Mason D; Bodkin MJ; Evans DA; Bhagwat A; Talloen W; Göhlmann HW; Shkedy Z; Bender A; Mol Biosyst; 2015 Jan; 11(1):86-96. PubMed ID: 25254964 [TBL] [Abstract][Full Text] [Related]
44. MNBDR: A Module Network Based Method for Drug Repositioning. Chen HG; Zhou XH Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33375395 [TBL] [Abstract][Full Text] [Related]
45. Computational Drug-repositioning Approach Identifying Sirolimus as a Potential Therapeutic Option for Inflammatory Dilated Cardiomyopathy. Shibata K; Endo T; Kuribayashi Y Drug Res (Stuttg); 2019 Oct; 69(10):565-571. PubMed ID: 31238376 [TBL] [Abstract][Full Text] [Related]
46. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing. Zhao K; So HC Methods Mol Biol; 2019; 1903():219-237. PubMed ID: 30547445 [TBL] [Abstract][Full Text] [Related]
47. Crude phenolic extracts from extra virgin olive oil circumvent de novo breast cancer resistance to HER1/HER2-targeting drugs by inducing GADD45-sensed cellular stress, G2/M arrest and hyperacetylation of Histone H3. Oliveras-Ferraros C; Fernández-Arroyo S; Vazquez-Martin A; Lozano-Sánchez J; Cufí S; Joven J; Micol V; Fernández-Gutiérrez A; Segura-Carretero A; Menendez JA Int J Oncol; 2011 Jun; 38(6):1533-47. PubMed ID: 21455577 [TBL] [Abstract][Full Text] [Related]
48. Drug repositioning in cancer: The current situation in Japan. Masuda T; Tsuruda Y; Matsumoto Y; Uchida H; Nakayama KI; Mimori K Cancer Sci; 2020 Apr; 111(4):1039-1046. PubMed ID: 31957175 [TBL] [Abstract][Full Text] [Related]
49. Prediction of drug efficacy for cancer treatment based on comparative analysis of chemosensitivity and gene expression data. Wan P; Li Q; Larsen JE; Eklund AC; Parlesak A; Rigina O; Nielsen SJ; Björkling F; Jónsdóttir SÓ Bioorg Med Chem; 2012 Jan; 20(1):167-76. PubMed ID: 22154557 [TBL] [Abstract][Full Text] [Related]
50. Topological network analysis of differentially expressed genes in cancer cells with acquired gefitinib resistance. Lee YS; Hwang SG; Kim JK; Park TH; Kim YR; Myeong HS; Kwon K; Jang CS; Noh YH; Kim SY Cancer Genomics Proteomics; 2015; 12(3):153-66. PubMed ID: 25977174 [TBL] [Abstract][Full Text] [Related]
51. Influence of batch effect correction methods on drug induced differential gene expression profiles. Zhou W; Koudijs KKM; Böhringer S BMC Bioinformatics; 2019 Aug; 20(1):437. PubMed ID: 31438848 [TBL] [Abstract][Full Text] [Related]
52. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma. Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538 [TBL] [Abstract][Full Text] [Related]
53. From malaria to cancer: Computational drug repositioning of amodiaquine using PLIP interaction patterns. Salentin S; Adasme MF; Heinrich JC; Haupt VJ; Daminelli S; Zhang Y; Schroeder M Sci Rep; 2017 Sep; 7(1):11401. PubMed ID: 28900272 [TBL] [Abstract][Full Text] [Related]
54. Identifying prognostic features by bottom-up approach and correlating to drug repositioning. Li W; Yu J; Lian B; Sun H; Li J; Zhang M; Li L; Li Y; Liu Q; Xie L PLoS One; 2015; 10(3):e0118672. PubMed ID: 25738841 [TBL] [Abstract][Full Text] [Related]
55. In-silico drug screening and potential target identification for hepatocellular carcinoma using Support Vector Machines based on drug screening result. Yang WL; Lee YE; Chen MH; Chao KM; Huang CY Gene; 2013 Apr; 518(1):201-8. PubMed ID: 23220021 [TBL] [Abstract][Full Text] [Related]
56. Linking pathway gene expressions to the growth inhibition response from the National Cancer Institute's anticancer screen and drug mechanism of action. Huang R; Wallqvist A; Thanki N; Covell DG Pharmacogenomics J; 2005; 5(6):381-99. PubMed ID: 16103895 [TBL] [Abstract][Full Text] [Related]
57. A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network. Jadamba E; Shin M Biomed Res Int; 2016; 2016():7147039. PubMed ID: 28127549 [TBL] [Abstract][Full Text] [Related]
58. Biological basis and clinical study of glycogen synthase kinase- 3β-targeted therapy by drug repositioning for glioblastoma. Furuta T; Sabit H; Dong Y; Miyashita K; Kinoshita M; Uchiyama N; Hayashi Y; Hayashi Y; Minamoto T; Nakada M Oncotarget; 2017 Apr; 8(14):22811-22824. PubMed ID: 28423558 [TBL] [Abstract][Full Text] [Related]
59. Drug repositioning by merging active subnetworks validated in cancer and COVID-19. Lucchetta M; Pellegrini M Sci Rep; 2021 Oct; 11(1):19839. PubMed ID: 34615934 [TBL] [Abstract][Full Text] [Related]
60. Drug target prediction and repositioning using an integrated network-based approach. Emig D; Ivliev A; Pustovalova O; Lancashire L; Bureeva S; Nikolsky Y; Bessarabova M PLoS One; 2013; 8(4):e60618. PubMed ID: 23593264 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]