These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 26954019)
61. Integrative transcriptional analysis between human and mouse cancer cells provides a common set of transformation associated genes. Balestrieri C; Vanoni M; Hautaniemi S; Alberghina L; Chiaradonna F Biotechnol Adv; 2012; 30(1):16-29. PubMed ID: 21736933 [TBL] [Abstract][Full Text] [Related]
62. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing. Lim H; Poleksic A; Yao Y; Tong H; He D; Zhuang L; Meng P; Xie L PLoS Comput Biol; 2016 Oct; 12(10):e1005135. PubMed ID: 27716836 [TBL] [Abstract][Full Text] [Related]
63. In silico drug repositioning: from large-scale transcriptome data to therapeutics. Kwon OS; Kim W; Cha HJ; Lee H Arch Pharm Res; 2019 Oct; 42(10):879-889. PubMed ID: 31482491 [TBL] [Abstract][Full Text] [Related]
64. Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures. Sawada R; Iwata M; Tabei Y; Yamato H; Yamanishi Y Sci Rep; 2018 Jan; 8(1):156. PubMed ID: 29317676 [TBL] [Abstract][Full Text] [Related]
65. Transcriptomic Data Mining and Repurposing for Computational Drug Discovery. Wang Y; Yella J; Jegga AG Methods Mol Biol; 2019; 1903():73-95. PubMed ID: 30547437 [TBL] [Abstract][Full Text] [Related]
66. Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor-Initiating Cells. Venugopal C; Hallett R; Vora P; Manoranjan B; Mahendram S; Qazi MA; McFarlane N; Subapanditha M; Nolte SM; Singh M; Bakhshinyan D; Garg N; Vijayakumar T; Lach B; Provias JP; Reddy K; Murty NK; Doble BW; Bhatia M; Hassell JA; Singh SK Clin Cancer Res; 2015 Dec; 21(23):5324-37. PubMed ID: 26152745 [TBL] [Abstract][Full Text] [Related]
67. In silico drug repositioning based on integrated drug targets and canonical correlation analysis. Chen H; Zhang Z; Zhang J BMC Med Genomics; 2022 Mar; 15(1):48. PubMed ID: 35249529 [TBL] [Abstract][Full Text] [Related]
68. Predicting new indications for approved drugs using a proteochemometric method. Dakshanamurthy S; Issa NT; Assefnia S; Seshasayee A; Peters OJ; Madhavan S; Uren A; Brown ML; Byers SW J Med Chem; 2012 Aug; 55(15):6832-48. PubMed ID: 22780961 [TBL] [Abstract][Full Text] [Related]
69. A Computational Systems Biology Approach for Identifying Candidate Drugs for Repositioning for Cardiovascular Disease. Yu AZ; Ramsey SA Interdiscip Sci; 2018 Jun; 10(2):449-454. PubMed ID: 27778232 [TBL] [Abstract][Full Text] [Related]
70. Drug repositioning framework by incorporating functional information. Wu Z; Wang Y; Chen L IET Syst Biol; 2013 Oct; 7(5):188-94. PubMed ID: 24067419 [TBL] [Abstract][Full Text] [Related]
71. Clinical application of genomic profiling to find druggable targets for adolescent and young adult (AYA) cancer patients with metastasis. Cha S; Lee J; Shin JY; Kim JY; Sim SH; Keam B; Kim TM; Kim DW; Heo DS; Lee SH; Kim JI BMC Cancer; 2016 Feb; 16():170. PubMed ID: 26925973 [TBL] [Abstract][Full Text] [Related]
72. DMAP: a connectivity map database to enable identification of novel drug repositioning candidates. Huang H; Nguyen T; Ibrahim S; Shantharam S; Yue Z; Chen JY BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S4. PubMed ID: 26423722 [TBL] [Abstract][Full Text] [Related]
73. A gene expression database for the molecular pharmacology of cancer. Scherf U; Ross DT; Waltham M; Smith LH; Lee JK; Tanabe L; Kohn KW; Reinhold WC; Myers TG; Andrews DT; Scudiero DA; Eisen MB; Sausville EA; Pommier Y; Botstein D; Brown PO; Weinstein JN Nat Genet; 2000 Mar; 24(3):236-44. PubMed ID: 10700175 [TBL] [Abstract][Full Text] [Related]
74. Functional genomics to explore cancer cell vulnerabilities. Kahle KT; Kozono D; Ng K; Hsieh G; Zinn PO; Nitta M; Chen CC Neurosurg Focus; 2010 Jan; 28(1):E5. PubMed ID: 20043720 [TBL] [Abstract][Full Text] [Related]
75. A computational method for drug repositioning using publicly available gene expression data. Shabana KM; Abdul Nazeer KA; Pradhan M; Palakal M BMC Bioinformatics; 2015; 16 Suppl 17(Suppl 17):S5. PubMed ID: 26679199 [TBL] [Abstract][Full Text] [Related]
76. Predicting target proteins for drug candidate compounds based on drug-induced gene expression data in a chemical structure-independent manner. Hizukuri Y; Sawada R; Yamanishi Y BMC Med Genomics; 2015 Dec; 8():82. PubMed ID: 26684652 [TBL] [Abstract][Full Text] [Related]
77. The Use of Large-Scale Chemically-Induced Transcriptome Data Acquired from LINCS to Study Small Molecules. Iwata M; Yamanishi Y Methods Mol Biol; 2019; 1888():189-203. PubMed ID: 30519948 [TBL] [Abstract][Full Text] [Related]
78. Linking the growth inhibition response from the National Cancer Institute's anticancer screen to gene expression levels and other molecular target data. Wallqvist A; Rabow AA; Shoemaker RH; Sausville EA; Covell DG Bioinformatics; 2003 Nov; 19(17):2212-24. PubMed ID: 14630650 [TBL] [Abstract][Full Text] [Related]
79. Computational approaches for drug repositioning and combination therapy design. Kotelnikova E; Yuryev A; Mazo I; Daraselia N J Bioinform Comput Biol; 2010 Jun; 8(3):593-606. PubMed ID: 20556864 [TBL] [Abstract][Full Text] [Related]
80. Comprehensive transcriptomic analysis of molecularly targeted drugs in cancer for target pathway evaluation. Mashima T; Ushijima M; Matsuura M; Tsukahara S; Kunimasa K; Furuno A; Saito S; Kitamura M; Soma-Nagae T; Seimiya H; Dan S; Yamori T; Tomida A Cancer Sci; 2015 Jul; 106(7):909-20. PubMed ID: 25911996 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]