BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26955025)

  • 1. In Vivo Estimation of Attenuation and Backscatter Coefficients From Human Thyroids.
    Rouyer J; Cueva T; Yamamoto T; Portal A; Lavarello RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1253-1261. PubMed ID: 26955025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative assessment of in vivo breast masses using ultrasound attenuation and backscatter.
    Nam K; Zagzebski JA; Hall TJ
    Ultrason Imaging; 2013 Apr; 35(2):146-61. PubMed ID: 23493613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Techniques and evaluation from a cross-platform imaging comparison of quantitative ultrasound parameters in an in vivo rodent fibroadenoma model.
    Wirtzfeld LA; Nam K; Labyed Y; Ghoshal G; Haak A; Sen-Gupta E; He Z; Hirtz NR; Miller RJ; Sarwate S; Simpson DG; Zagzebski JA; Bigelow TA; Oelze M; Hall TJ; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1386-400. PubMed ID: 25004506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic Properties of Breast Fat.
    Nasief HG; Rosado-Mendez IM; Zagzebski JA; Hall TJ
    J Ultrasound Med; 2015 Nov; 34(11):2007-16. PubMed ID: 26446820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of ultrasound attenuation and backscatter estimates in layered tissue-mimicking phantoms among three clinical scanners.
    Nam K; Rosado-Mendez IM; Wirtzfeld LA; Ghoshal G; Pawlicki AD; Madsen EL; Lavarello RJ; Oelze ML; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2012 Oct; 34(4):209-21. PubMed ID: 23160474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the impact of backscatter intensity variations on ultrasound attenuation estimation.
    Omari EA; Varghese T; Madsen EL; Frank G
    Med Phys; 2013 Aug; 40(8):082904. PubMed ID: 23927359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of Backscatter Coefficients Using an In Situ Calibration Source.
    Nguyen TN; Tam AJ; Do MN; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):308-317. PubMed ID: 31567079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative ultrasound techniques for assessing thermal ablation: Measurement of the backscatter coefficient from ex vivo human liver.
    Rohfritsch A; Franceschini E; Dupré A; Melodelima D
    Med Phys; 2023 Nov; 50(11):6908-6919. PubMed ID: 37769022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of thyroid cancer in mouse models using high-frequency quantitative ultrasound techniques.
    Lavarello RJ; Ridgway WR; Sarwate SS; Oelze ML
    Ultrasound Med Biol; 2013 Dec; 39(12):2333-41. PubMed ID: 24035621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms.
    Anderson JJ; Herd MT; King MR; Haak A; Hafez ZT; Song J; Oelze ML; Madsen EL; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2010 Jan; 32(1):48-64. PubMed ID: 20690431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Validation of an In Situ Calibration Bead as a Reference for Backscatter Coefficient Calculation.
    Zhao Y; Czarnota GJ; Park TH; Miller RJ; Oelze ML
    Ultrasound Med Biol; 2024 Jun; 50(6):833-842. PubMed ID: 38471999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral-based Quantitative Ultrasound Imaging Processing Techniques: Comparisons of RF Versus IQ Approaches.
    Liu M; Kou Z; Zhao Y; Wiskin JW; Czarnota GJ; Oelze ML
    Ultrason Imaging; 2024 Mar; 46(2):75-89. PubMed ID: 38318705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and phantom based investigation of the impact of sound speed and backscatter variations on attenuation slope estimation.
    Omari E; Lee H; Varghese T
    Ultrasonics; 2011 Aug; 51(6):758-67. PubMed ID: 21477832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the estimation of backscatter coefficients using single-element focused transducers.
    Lavarello RJ; Ghoshal G; Oelze ML
    J Acoust Soc Am; 2011 May; 129(5):2903-11. PubMed ID: 21568393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective scatterer diameter estimates for broad scatterer size distributions.
    Nordberg EP; Hall TJ
    Ultrason Imaging; 2015 Jan; 37(1):3-21. PubMed ID: 24831300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing Fatty Liver in vivo in Rabbits, Using Quantitative Ultrasound.
    Nguyen TN; Podkowa AS; Tam AY; Arnold EC; Miller RJ; Park TH; Do MN; Oelze ML
    Ultrasound Med Biol; 2019 Aug; 45(8):2049-2062. PubMed ID: 31076231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat.
    Raju BI; Srinivasan MA
    Ultrasound Med Biol; 2001 Nov; 27(11):1543-56. PubMed ID: 11750754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower Bound on Estimation Variance of the Ultrasonic Attenuation Coefficient Using the Spectral-Difference Reference-phantom Method.
    Samimi K; Varghese T
    Ultrason Imaging; 2017 May; 39(3):151-171. PubMed ID: 28425388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acoustic nonlinearities on the ultrasonic backscatter coefficient estimation.
    Coila A; Oelze ML
    J Acoust Soc Am; 2019 Jul; 146(1):85. PubMed ID: 31370607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total attenuation compensation for backscatter coefficient estimation using full angular spatial compounding.
    Coila A; Rouyer J; Zenteno O; Luchies A; Oelze ML; Lavarello R
    Ultrasonics; 2021 Jul; 114():106376. PubMed ID: 33578199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.