BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1734 related articles for article (PubMed ID: 26955741)

  • 1. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraordinary reinforcement effect of three-dimensionally nanoporous cellulose gels in poly(ε-caprolactone) bionanocomposites.
    Li K; Song J; Xu M; Kuga S; Zhang L; Cai J
    ACS Appl Mater Interfaces; 2014 May; 6(10):7204-13. PubMed ID: 24779576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites.
    Shi Z; Huang J; Liu C; Ding B; Kuga S; Cai J; Zhang L
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22990-8. PubMed ID: 26397710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically strong polystyrene nanocomposites by peroxide-induced grafting of styrene monomers within nanoporous cellulose gels.
    Li K; Huang J; Xu D; Zhong Y; Zhang L; Cai J
    Carbohydr Polym; 2018 Nov; 199():473-481. PubMed ID: 30143152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastomeric hydrolyzable porous scaffolds: copolymers of aliphatic polyesters and a polyether-ester.
    Odelius K; Plikk P; Albertsson AC
    Biomacromolecules; 2005; 6(5):2718-25. PubMed ID: 16153111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization.
    Lu Y; Cueva MC; Lara-Curzio E; Ozcan S
    Carbohydr Polym; 2015 Oct; 131():208-17. PubMed ID: 26256177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.
    Torabinejad B; Mohammadi-Rovshandeh J; Davachi SM; Zamanian A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():199-210. PubMed ID: 25063111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering.
    Zhang K; Wang H; Huang C; Su Y; Mo X; Ikada Y
    J Biomed Mater Res A; 2010 Jun; 93(3):984-93. PubMed ID: 19722280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkaline and enzymatic degradation of L-lactide copolymers, 1. Amorphous-made films of L-lactide copolymers with D-lactide, glycolide, and epsilon-caprolactone.
    Tsuji H; Tezuka Y
    Macromol Biosci; 2005 Feb; 5(2):135-48. PubMed ID: 15729721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comprehensive Investigation of the Structural, Thermal, and Biological Properties of Fully Randomized Biomedical Polyesters Synthesized with a Nontoxic Bismuth(III) Catalyst.
    Domańska IM; Zgadzaj A; Kowalczyk S; Zalewska A; Oledzka E; Cieśla K; Plichta A; Sobczak M
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds.
    Fuoco T; Finne-Wistrand A; Pappalardo D
    Biomacromolecules; 2016 Apr; 17(4):1383-94. PubMed ID: 26915640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA.
    Petit A; Müller B; Meijboom R; Bruin P; van de Manakker F; Versluijs-Helder M; de Leede LG; Doornbos A; Landin M; Hennink WE; Vermonden T
    Biomacromolecules; 2013 Sep; 14(9):3172-82. PubMed ID: 23875877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications.
    Eftekhari S; El Sawi I; Bagheri ZS; Turcotte G; Bougherara H
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():120-5. PubMed ID: 24863207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds.
    Jeong SI; Kim BS; Lee YM; Ihn KJ; Kim SH; Kim YH
    Biomacromolecules; 2004; 5(4):1303-9. PubMed ID: 15244444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of macroporous biodegradable poly(L-lactide-co-epsilon-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy.
    Maquet V; Blacher S; Pirard R; Pirard JP; Vyakarnam MN; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):199-213. PubMed ID: 12888989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology.
    Sheng SJ; Hu X; Wang F; Ma QY; Gu MF
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of poly(ɛ-caprolactone-co-L-lactide) on thermal and functional properties of poly(L-lactide).
    Qin Y; Liu S; Zhang Y; Yuan M; Li H; Yuan M
    Int J Biol Macromol; 2014 Sep; 70():327-33. PubMed ID: 25020084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites.
    Cheng D; Wei P; Zhang L; Cai J
    RSC Adv; 2018 Jul; 8(48):27045-27053. PubMed ID: 35539974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue.
    Hou M; Wu Q; Dai M; Xu P; Gu C; Jia X; Feng J; Mo X
    Biomed Mater; 2014 Dec; 10(1):015005. PubMed ID: 25546879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites.
    Goffin AL; Raquez JM; Duquesne E; Siqueira G; Habibi Y; Dufresne A; Dubois P
    Biomacromolecules; 2011 Jul; 12(7):2456-65. PubMed ID: 21623629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 87.