These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1752 related articles for article (PubMed ID: 26955741)

  • 1. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraordinary reinforcement effect of three-dimensionally nanoporous cellulose gels in poly(ε-caprolactone) bionanocomposites.
    Li K; Song J; Xu M; Kuga S; Zhang L; Cai J
    ACS Appl Mater Interfaces; 2014 May; 6(10):7204-13. PubMed ID: 24779576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites.
    Shi Z; Huang J; Liu C; Ding B; Kuga S; Cai J; Zhang L
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22990-8. PubMed ID: 26397710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically strong polystyrene nanocomposites by peroxide-induced grafting of styrene monomers within nanoporous cellulose gels.
    Li K; Huang J; Xu D; Zhong Y; Zhang L; Cai J
    Carbohydr Polym; 2018 Nov; 199():473-481. PubMed ID: 30143152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastomeric hydrolyzable porous scaffolds: copolymers of aliphatic polyesters and a polyether-ester.
    Odelius K; Plikk P; Albertsson AC
    Biomacromolecules; 2005; 6(5):2718-25. PubMed ID: 16153111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization.
    Lu Y; Cueva MC; Lara-Curzio E; Ozcan S
    Carbohydr Polym; 2015 Oct; 131():208-17. PubMed ID: 26256177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.
    Torabinejad B; Mohammadi-Rovshandeh J; Davachi SM; Zamanian A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():199-210. PubMed ID: 25063111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering.
    Zhang K; Wang H; Huang C; Su Y; Mo X; Ikada Y
    J Biomed Mater Res A; 2010 Jun; 93(3):984-93. PubMed ID: 19722280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkaline and enzymatic degradation of L-lactide copolymers, 1. Amorphous-made films of L-lactide copolymers with D-lactide, glycolide, and epsilon-caprolactone.
    Tsuji H; Tezuka Y
    Macromol Biosci; 2005 Feb; 5(2):135-48. PubMed ID: 15729721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comprehensive Investigation of the Structural, Thermal, and Biological Properties of Fully Randomized Biomedical Polyesters Synthesized with a Nontoxic Bismuth(III) Catalyst.
    Domańska IM; Zgadzaj A; Kowalczyk S; Zalewska A; Oledzka E; Cieśla K; Plichta A; Sobczak M
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds.
    Fuoco T; Finne-Wistrand A; Pappalardo D
    Biomacromolecules; 2016 Apr; 17(4):1383-94. PubMed ID: 26915640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA.
    Petit A; Müller B; Meijboom R; Bruin P; van de Manakker F; Versluijs-Helder M; de Leede LG; Doornbos A; Landin M; Hennink WE; Vermonden T
    Biomacromolecules; 2013 Sep; 14(9):3172-82. PubMed ID: 23875877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications.
    Eftekhari S; El Sawi I; Bagheri ZS; Turcotte G; Bougherara H
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():120-5. PubMed ID: 24863207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds.
    Jeong SI; Kim BS; Lee YM; Ihn KJ; Kim SH; Kim YH
    Biomacromolecules; 2004; 5(4):1303-9. PubMed ID: 15244444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of macroporous biodegradable poly(L-lactide-co-epsilon-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy.
    Maquet V; Blacher S; Pirard R; Pirard JP; Vyakarnam MN; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):199-213. PubMed ID: 12888989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology.
    Sheng SJ; Hu X; Wang F; Ma QY; Gu MF
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of poly(ɛ-caprolactone-co-L-lactide) on thermal and functional properties of poly(L-lactide).
    Qin Y; Liu S; Zhang Y; Yuan M; Li H; Yuan M
    Int J Biol Macromol; 2014 Sep; 70():327-33. PubMed ID: 25020084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue.
    Hou M; Wu Q; Dai M; Xu P; Gu C; Jia X; Feng J; Mo X
    Biomed Mater; 2014 Dec; 10(1):015005. PubMed ID: 25546879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites.
    Goffin AL; Raquez JM; Duquesne E; Siqueira G; Habibi Y; Dufresne A; Dubois P
    Biomacromolecules; 2011 Jul; 12(7):2456-65. PubMed ID: 21623629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers.
    Lu XL; Sun ZJ; Cai W; Gao ZY
    J Mater Sci Mater Med; 2008 Jan; 19(1):395-9. PubMed ID: 17607526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 88.