These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26955749)

  • 1. Thermostabilization of Bacillus subtilis GH11 xylanase by surface charge engineering.
    Alponti JS; Fonseca Maldonado R; Ward RJ
    Int J Biol Macromol; 2016 Jun; 87():522-8. PubMed ID: 26955749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme.
    Ruller R; Alponti J; Deliberto LA; Zanphorlin LM; Machado CB; Ward RJ
    Protein Eng Des Sel; 2014 Aug; 27(8):255-62. PubMed ID: 25096197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostable variants of the recombinant xylanase A from Bacillus subtilis produced by directed evolution show reduced heat capacity changes.
    Ruller R; Deliberto L; Ferreira TL; Ward RJ
    Proteins; 2008 Mar; 70(4):1280-93. PubMed ID: 17876824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability.
    Beliën T; Joye IJ; Delcour JA; Courtin CM
    Protein Eng Des Sel; 2009 Oct; 22(10):587-96. PubMed ID: 19531602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of local residue environmental changes in thermostable mutants of the GH11 xylanase from Bacillus subtilis.
    Silva SB; Pinheiro MP; Fuzo CA; Silva SR; Ferreira TL; Lourenzoni MR; Nonato MC; Vieira DS; Ward RJ
    Int J Biol Macromol; 2017 Apr; 97():574-584. PubMed ID: 28109807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering increased thermostability in the GH-10 endo-1,4-β-xylanase from Thermoascus aurantiacus CBMAI 756.
    de Souza AR; de Araújo GC; Zanphorlin LM; Ruller R; Franco FC; Torres FA; Mertens JA; Bowman MJ; Gomes E; Da Silva R
    Int J Biol Macromol; 2016 Dec; 93(Pt A):20-26. PubMed ID: 27554938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance.
    Li H; Kankaanpää A; Xiong H; Hummel M; Sixta H; Ojamo H; Turunen O
    Enzyme Microb Technol; 2013 Dec; 53(6-7):414-9. PubMed ID: 24315645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution of the thermostable xylanase from Thermomyces lanuginosus.
    Stephens DE; Rumbold K; Permaul K; Prior BA; Singh S
    J Biotechnol; 2007 Jan; 127(3):348-54. PubMed ID: 16893583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in the thermostability of GH11 xylanase XynJ from Bacillus sp. strain 41M-1 using site saturation mutagenesis.
    Takita T; Nakatani K; Katano Y; Suzuki M; Kojima K; Saka N; Mikami B; Yatsunami R; Nakamura S; Yasukawa K
    Enzyme Microb Technol; 2019 Nov; 130():109363. PubMed ID: 31421720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the pattern of protein glycosylation modulates the thermostability of a GH11 xylanase.
    Fonseca-Maldonado R; Vieira DS; Alponti JS; Bonneil E; Thibault P; Ward RJ
    J Biol Chem; 2013 Aug; 288(35):25522-25534. PubMed ID: 23846692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution.
    Miyazaki K; Takenouchi M; Kondo H; Noro N; Suzuki M; Tsuda S
    J Biol Chem; 2006 Apr; 281(15):10236-42. PubMed ID: 16467302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis.
    Bai W; Cao Y; Liu J; Wang Q; Jia Z
    BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of GH10 xylanase A from Penicillium canescens for determining factors affecting the enzyme thermostability.
    Denisenko YA; Gusakov AV; Rozhkova AM; Osipov DO; Zorov IN; Matys VY; Uporov IV; Sinitsyn AP
    Int J Biol Macromol; 2017 Nov; 104(Pt A):665-671. PubMed ID: 28634062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis.
    Zhang ZG; Yi ZL; Pei XQ; Wu ZL
    Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis and thermostability of xylanase XYNB from Aspergillus niger 400264.
    Xie J; Song L; Li X; Yi X; Xu H; Li J; Qiao D; Cao Y
    Curr Microbiol; 2011 Jan; 62(1):242-8. PubMed ID: 20593181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement in thermostability of xylanase from Geobacillus thermodenitrificans C5 by site directed mutagenesis.
    Irfan M; Gonzalez CF; Raza S; Rafiq M; Hasan F; Khan S; Shah AA
    Enzyme Microb Technol; 2018 Apr; 111():38-47. PubMed ID: 29421035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermostabilization of Bacillus circulans xylanase via computational design of a flexible surface cavity.
    Joo JC; Pohkrel S; Pack SP; Yoo YJ
    J Biotechnol; 2010 Mar; 146(1-2):31-9. PubMed ID: 20074594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a high-performance, metagenomic-derived novel xylanase with improved soluble protein yield and thermostability.
    Qian C; Liu N; Yan X; Wang Q; Zhou Z; Wang Q
    Enzyme Microb Technol; 2015 Mar; 70():35-41. PubMed ID: 25659630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of a N-terminal disulfide bridge to improve the thermostability of a GH11 xylanase from Aspergillus niger.
    Zhou CY; Li TB; Wang YT; Zhu XS; Kang J
    J Gen Appl Microbiol; 2016; 62(2):83-9. PubMed ID: 27118076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a chimeric hemicellulase to enhance the xylose production and thermotolerance.
    Diogo JA; Hoffmam ZB; Zanphorlin LM; Cota J; Machado CB; Wolf LD; Squina F; Damásio AR; Murakami MT; Ruller R
    Enzyme Microb Technol; 2015 Feb; 69():31-7. PubMed ID: 25640722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.