BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 26955801)

  • 1. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration.
    Kumar S; Raj S; Sarkar K; Chatterjee K
    Nanoscale; 2016 Mar; 8(12):6820-36. PubMed ID: 26955801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications.
    Kumar S; Raj S; Kolanthai E; Sood AK; Sampath S; Chatterjee K
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3237-52. PubMed ID: 25584679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells.
    Lee JH; Shin YC; Jin OS; Kang SH; Hwang YS; Park JC; Hong SW; Han DW
    Nanoscale; 2015 Jul; 7(27):11642-51. PubMed ID: 26098486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold.
    Kumar S; Chatterjee K
    Nanoscale; 2015 Feb; 7(5):2023-33. PubMed ID: 25553731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering.
    Ganesh N; Jayakumar R; Koyakutty M; Mony U; Nair SV
    Tissue Eng Part A; 2012 Sep; 18(17-18):1867-81. PubMed ID: 22725098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats.
    Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications.
    Abudhahir M; Saleem A; Paramita P; Kumar SD; Tze-Wen C; Selvamurugan N; Moorthi A
    J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):654-664. PubMed ID: 32935919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties.
    Jaidev LR; Kumar S; Chatterjee K
    Colloids Surf B Biointerfaces; 2017 Nov; 159():293-302. PubMed ID: 28802737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
    Ambre AH; Katti DR; Katti KS
    J Biomed Mater Res A; 2015 Jun; 103(6):2077-101. PubMed ID: 25331212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration.
    Bagchi A; Meka SR; Rao BN; Chatterjee K
    Nanotechnology; 2014 Dec; 25(48):485101. PubMed ID: 25379989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on Graphene oxide-modified nanofibers.
    Saburi E; Islami M; Hosseinzadeh S; Moghadam AS; Mansour RN; Azadian E; Joneidi Z; Nikpoor AR; Ghadiani MH; Khodaii Z; Ardeshirylajimi A
    Gene; 2019 May; 696():72-79. PubMed ID: 30772518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of poly (ethylenimine) modified poly (l-lactic acid) nanofibrous scaffolds.
    Guo R; Chen S; Xiao X
    J Biomater Sci Polym Ed; 2019 Nov; 30(16):1523-1541. PubMed ID: 31359828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering.
    Binulal NS; Natarajan A; Menon D; Bhaskaran VK; Mony U; Nair SV
    Biomed Mater; 2012 Dec; 7(6):065001. PubMed ID: 23047255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering.
    Arun Kumar R; Sivashanmugam A; Deepthi S; Iseki S; Chennazhi KP; Nair SV; Jayakumar R
    ACS Appl Mater Interfaces; 2015 May; 7(18):9399-409. PubMed ID: 25893690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.
    Luo Z; Deng Y; Zhang R; Wang M; Bai Y; Zhao Q; Lyu Y; Wei J; Wei S
    Colloids Surf B Biointerfaces; 2015 Jul; 131():73-82. PubMed ID: 25969416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering.
    Purohit SD; Bhaskar R; Singh H; Yadav I; Gupta MK; Mishra NC
    Int J Biol Macromol; 2019 Jul; 133():592-602. PubMed ID: 31004650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells.
    Rostami F; Tamjid E; Behmanesh M
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111102. PubMed ID: 32600706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators.
    Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV
    Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.