These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 26955904)

  • 1. Effect of acute high-intensity exercise in normobaric hypoxia on Thoroughbred skeletal muscle.
    Okabe K; Mukai K; Ohmura H; Takahashi T; Miyata H
    J Sports Med Phys Fitness; 2017 May; 57(5):711-719. PubMed ID: 26955904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of High-Intensity Training in Normobaric Hypoxia on Thoroughbred Skeletal Muscle.
    Nagahisa H; Mukai K; Ohmura H; Takahashi T; Miyata H
    Oxid Med Cell Longev; 2016; 2016():1535367. PubMed ID: 27721912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moderate and high intensity sprint exercise induce differential responses in COX4I2 and PDK4 gene expression in Thoroughbred horse skeletal muscle.
    Hill EW; Eivers SS; McGivney BA; Fonseca RG; Gu J; Smith NA; Browne JA; MacHugh DE; Katz LM
    Equine Vet J Suppl; 2010 Nov; (38):576-81. PubMed ID: 21059063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of exercise intensity and duration to training-linked myosin transitions in thoroughbreds.
    Rivero JL; Ruz A; Marti-Korfft S; Lindner A
    Equine Vet J Suppl; 2006 Aug; (36):311-5. PubMed ID: 17402438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-term hypoxic training increases monocarboxylate transporter 4 and phosphofructokinase activity in Thoroughbreds.
    Wang W; Mukai K; Takahashi K; Ohmura H; Takahashi T; Hatta H; Kitaoka Y
    Physiol Rep; 2020 Jun; 8(11):e14473. PubMed ID: 32512646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle satellite cells are activated after exercise to exhaustion in Thoroughbred horses.
    Kawai M; Aida H; Hiraga A; Miyata H
    Equine Vet J; 2013 Jul; 45(4):512-7. PubMed ID: 23206314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolomic analysis of skeletal muscle before and after strenuous exercise to fatigue.
    Ohmura H; Mukai K; Takahashi Y; Takahashi T
    Sci Rep; 2021 May; 11(1):11261. PubMed ID: 34045613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moderate-intensity training in hypoxia improves exercise performance and glycolytic capacity of skeletal muscle in horses.
    Mukai K; Kitaoka Y; Takahashi Y; Takahashi T; Takahashi K; Ohmura H
    Physiol Rep; 2021 Dec; 9(23):e15145. PubMed ID: 34889527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recruitment pattern of muscle fibre type during flat and sloped treadmill running in thoroughbred horses.
    Eto D; Yamano S; Hiraga A; Miyata H
    Equine Vet J Suppl; 2006 Aug; (36):349-53. PubMed ID: 17402446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training.
    Eivers SS; McGivney BA; Fonseca RG; MacHugh DE; Menson K; Park SD; Rivero JL; Taylor CT; Katz LM; Hill EW
    Physiol Genomics; 2010 Jan; 40(2):83-93. PubMed ID: 19861432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the metabolic responses of trained Arabians and Thoroughbreds during high- and low-intensity exercise.
    Prince A; Geor R; Harris P; Hoekstra K; Gardner S; Hudson C; Pagan J
    Equine Vet J Suppl; 2002 Sep; (34):95-9. PubMed ID: 12405666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribose supplementation in maximally exercising Thoroughbreds.
    Kavazis AN; Sobota JS; Kivipelto J; Porter MB; Colahan PT; Ott EA
    Equine Vet J Suppl; 2002 Sep; (34):191-6. PubMed ID: 12405685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP loss with exercise in muscle fibres of the gluteus medius of the thoroughbred horse.
    Harris DB; Harris RC; Wilson AM; Goodship A
    Res Vet Sci; 1997; 63(3):231-7. PubMed ID: 9491449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human VEGF gene expression in skeletal muscle: effect of acute normoxic and hypoxic exercise.
    Richardson RS; Wagner H; Mudaliar SR; Henry R; Noyszewski EA; Wagner PD
    Am J Physiol; 1999 Dec; 277(6):H2247-52. PubMed ID: 10600843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of mild forelimb lameness on exercise performance.
    Parente EJ; Russau AL; Birks EK
    Equine Vet J Suppl; 2002 Sep; (34):252-6. PubMed ID: 12405696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia.
    Olfert IM; Breen EC; Mathieu-Costello O; Wagner PD
    J Appl Physiol (1985); 2001 Sep; 91(3):1176-84. PubMed ID: 11509513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pro- and macroglycogenolysis in skeletal muscle during maximal treadmill exercise.
    Bröjer J; Jonasson R; Schuback K; Essén-Gustavsson B
    Equine Vet J Suppl; 2002 Sep; (34):205-8. PubMed ID: 12405687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of prolonged training, overtraining and detraining on skeletal muscle metabolites and enzymes.
    McGowan CM; Golland LC; Evans DL; Hodgson DR; Rose RJ
    Equine Vet J Suppl; 2002 Sep; (34):257-63. PubMed ID: 12405697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of plasma biochemical parameters in Thoroughbred and Purebred Arabian horses during the same-intensity exercise.
    Kedzierski W; Bergero D
    Pol J Vet Sci; 2006; 9(4):233-8. PubMed ID: 17203741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PGC-1α encoded by the PPARGC1A gene regulates oxidative energy metabolism in equine skeletal muscle during exercise.
    Eivers SS; McGivney BA; Gu J; MacHugh DE; Katz LM; Hill EW
    Anim Genet; 2012 Apr; 43(2):153-62. PubMed ID: 22404351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.