These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 26956182)
1. Abnormalities of the executive control network in multiple sclerosis phenotypes: An fMRI effective connectivity study. Dobryakova E; Rocca MA; Valsasina P; Ghezzi A; Colombo B; Martinelli V; Comi G; DeLuca J; Filippi M Hum Brain Mapp; 2016 Jun; 37(6):2293-304. PubMed ID: 26956182 [TBL] [Abstract][Full Text] [Related]
2. Mapping face encoding using functional MRI in multiple sclerosis across disease phenotypes. Rocca MA; Vacchi L; Rodegher M; Meani A; Martinelli V; Possa F; Comi G; Falini A; Filippi M Brain Imaging Behav; 2017 Oct; 11(5):1238-1247. PubMed ID: 27714550 [TBL] [Abstract][Full Text] [Related]
3. Altered neural mechanisms of cognitive control in patients with primary progressive multiple sclerosis: An effective connectivity study. Dobryakova E; Rocca MA; Valsasina P; DeLuca J; Filippi M Hum Brain Mapp; 2017 May; 38(5):2580-2588. PubMed ID: 28205364 [TBL] [Abstract][Full Text] [Related]
4. Multiple brain networks support processing speed abilities of patients with multiple sclerosis. Manca R; Mitolo M; Stabile MR; Bevilacqua F; Sharrack B; Venneri A Postgrad Med; 2019 Sep; 131(7):523-532. PubMed ID: 31478421 [No Abstract] [Full Text] [Related]
5. Functional connectivity changes within specific networks parallel the clinical evolution of multiple sclerosis. Basile B; Castelli M; Monteleone F; Nocentini U; Caltagirone C; Centonze D; Cercignani M; Bozzali M Mult Scler; 2014 Jul; 20(8):1050-7. PubMed ID: 24326671 [TBL] [Abstract][Full Text] [Related]
6. Staging of cortical and deep grey matter functional connectivity changes in multiple sclerosis. Meijer KA; Eijlers AJC; Geurts JJG; Schoonheim MM J Neurol Neurosurg Psychiatry; 2018 Feb; 89(2):205-210. PubMed ID: 28986469 [TBL] [Abstract][Full Text] [Related]
7. Differential involvement of brainstem noradrenergic and midbrain dopaminergic nuclei in cognitive control. Köhler S; Bär KJ; Wagner G Hum Brain Mapp; 2016 Jun; 37(6):2305-18. PubMed ID: 26970351 [TBL] [Abstract][Full Text] [Related]
8. Evidence of impaired brain activity balance after passive sensorimotor stimulation in multiple sclerosis. Petsas N; Tinelli E; Lenzi D; Tomassini V; Sbardella E; Tona F; Raz E; Nucciarelli V; Pozzilli C; Pantano P PLoS One; 2013; 8(6):e65315. PubMed ID: 23799005 [TBL] [Abstract][Full Text] [Related]
9. Distributed causality in resting-state network connectivity in the acute and remitting phases of RRMS. Wu L; Huang M; Zhou F; Zeng X; Gong H BMC Neurosci; 2020 Sep; 21(1):37. PubMed ID: 32933478 [TBL] [Abstract][Full Text] [Related]
10. Working memory network dysfunction in relapse-onset multiple sclerosis phenotypes: A clinical-imaging evaluation. Vacchi L; Rocca MA; Meani A; Rodegher M; Martinelli V; Comi G; Falini A; Filippi M Mult Scler; 2017 Apr; 23(4):577-587. PubMed ID: 27354020 [TBL] [Abstract][Full Text] [Related]
11. [Information processing speed and influential factors in multiple sclerosis]. Zhang ML; Xu EH; Dong HQ; Zhang JW Zhonghua Yi Xue Za Zhi; 2016 Apr; 96(15):1173-7. PubMed ID: 27117362 [TBL] [Abstract][Full Text] [Related]
12. The relationship between executive functioning, processing speed, and white matter integrity in multiple sclerosis. Genova HM; DeLuca J; Chiaravalloti N; Wylie G J Clin Exp Neuropsychol; 2013; 35(6):631-41. PubMed ID: 23777468 [TBL] [Abstract][Full Text] [Related]
13. Cognitive impairment differs between primary progressive and relapsing-remitting MS. Ruet A; Deloire M; Charré-Morin J; Hamel D; Brochet B Neurology; 2013 Apr; 80(16):1501-8. PubMed ID: 23516324 [TBL] [Abstract][Full Text] [Related]
14. Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Yuan K; Qin W; Yu D; Bi Y; Xing L; Jin C; Tian J Brain Struct Funct; 2016 Apr; 221(3):1427-42. PubMed ID: 25573247 [TBL] [Abstract][Full Text] [Related]
15. Cerebellar contribution to motor and cognitive performance in multiple sclerosis: An MRI sub-regional volumetric analysis. D'Ambrosio A; Pagani E; Riccitelli GC; Colombo B; Rodegher M; Falini A; Comi G; Filippi M; Rocca MA Mult Scler; 2017 Aug; 23(9):1194-1203. PubMed ID: 27760859 [TBL] [Abstract][Full Text] [Related]
16. Differential cerebellar functional interactions during an interference task across multiple sclerosis phenotypes. Rocca MA; Bonnet MC; Meani A; Valsasina P; Colombo B; Comi G; Filippi M Radiology; 2012 Dec; 265(3):864-73. PubMed ID: 22966067 [TBL] [Abstract][Full Text] [Related]
17. Education, and the balance between dynamic and stationary functional connectivity jointly support executive functions in relapsing-remitting multiple sclerosis. Lin SJ; Vavasour I; Kosaka B; Li DKB; Traboulsee A; MacKay A; McKeown MJ Hum Brain Mapp; 2018 Dec; 39(12):5039-5049. PubMed ID: 30240533 [TBL] [Abstract][Full Text] [Related]
18. Resting-state functional connectivity networks associated with fatigue in multiple sclerosis with early age onset. Stefancin P; Govindarajan ST; Krupp L; Charvet L; Duong TQ Mult Scler Relat Disord; 2019 Jun; 31():101-105. PubMed ID: 30954931 [TBL] [Abstract][Full Text] [Related]
19. Abnormal adaptation over time of motor network recruitment in multiple sclerosis patients with fatigue. Rocca MA; Meani A; Riccitelli GC; Colombo B; Rodegher M; Falini A; Comi G; Filippi M Mult Scler; 2016 Aug; 22(9):1144-53. PubMed ID: 26493126 [TBL] [Abstract][Full Text] [Related]