BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26956236)

  • 1. Boosting fatty acid synthesis in Rhodococcus opacus PD630 by overexpression of autologous thioesterases.
    Huang L; Zhao L; Zan X; Song Y; Ratledge C
    Biotechnol Lett; 2016 Jun; 38(6):999-1008. PubMed ID: 26956236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rewiring neutral lipids production for the de novo synthesis of wax esters in Rhodococcus opacus PD630.
    Lanfranconi MP; Alvarez HM
    J Biotechnol; 2017 Oct; 260():67-73. PubMed ID: 28917932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol.
    Lee S; Park S; Park C; Pack SP; Lee J
    Enzyme Microb Technol; 2014 Dec; 67():8-16. PubMed ID: 25442943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using 1-propanol to significantly enhance the production of valuable odd-chain fatty acids by Rhodococcus opacus PD630.
    Zhang LS; Xu P; Chu MY; Zong MH; Yang JG; Lou WY
    World J Microbiol Biotechnol; 2019 Oct; 35(11):164. PubMed ID: 31637528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630.
    Hernández MA; Arabolaza A; Rodríguez E; Gramajo H; Alvarez HM
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2119-30. PubMed ID: 22926642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids).
    Kalscheuer R; Arenskötter M; Steinbüchel A
    Appl Microbiol Biotechnol; 1999 Oct; 52(4):508-15. PubMed ID: 10570798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.
    Holder JW; Ulrich JC; DeBono AC; Godfrey PA; Desjardins CA; Zucker J; Zeng Q; Leach AL; Ghiviriga I; Dancel C; Abeel T; Gevers D; Kodira CD; Desany B; Affourtit JP; Birren BW; Sinskey AJ
    PLoS Genet; 2011 Sep; 7(9):e1002219. PubMed ID: 21931557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharification of cellulose by recombinant Rhodococcus opacus PD630 strains.
    Hetzler S; Bröker D; Steinbüchel A
    Appl Environ Microbiol; 2013 Sep; 79(17):5159-66. PubMed ID: 23793636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of substrate specificity in a catalytically diverse family of acyl-ACP thioesterases from plants.
    Kalinger RS; Rowland O
    BMC Plant Biol; 2023 Jan; 23(1):1. PubMed ID: 36588156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.
    Zhang X; Li M; Agrawal A; San KY
    Metab Eng; 2011 Nov; 13(6):713-22. PubMed ID: 22001432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro effects of sterculic acid on lipid biosynthesis in Rhodococcus opacus strain PD630 and isolation of mutants defective in fatty acid desaturation.
    Wältermann M; Steinbüchel A
    FEMS Microbiol Lett; 2000 Sep; 190(1):45-50. PubMed ID: 10981688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycogenformation by Rhodococcus species and the effect of inhibition of lipid biosynthesis on glycogen accumulation in Rhodococcus opacus PD630.
    Hernández MA; Alvarez HM
    FEMS Microbiol Lett; 2010 Nov; 312(1):93-9. PubMed ID: 21069909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of a xylose metabolic pathway in Rhodococcus strains.
    Xiong X; Wang X; Chen S
    Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production.
    Herrero OM; Moncalián G; Alvarez HM
    Microbiology (Reading); 2016 Feb; 162(2):384-397. PubMed ID: 26732874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains.
    Hernández MA; Comba S; Arabolaza A; Gramajo H; Alvarez HM
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2191-207. PubMed ID: 25213912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630.
    Alvarez HM; Mayer F; Fabritius D; Steinbüchel A
    Arch Microbiol; 1996 Jun; 165(6):377-86. PubMed ID: 8661931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Escherichia coli MG1655 strains to produce long chain fatty acids by engineering fatty acid synthesis (FAS) metabolism.
    Jeon E; Lee S; Won JI; Han SO; Kim J; Lee J
    Enzyme Microb Technol; 2011 Jun; 49(1):44-51. PubMed ID: 22112270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase.
    Voelker TA; Davies HM
    J Bacteriol; 1994 Dec; 176(23):7320-7. PubMed ID: 7961504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus.
    Wei Z; Zeng G; Kosa M; Huang D; Ragauskas AJ
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1234-46. PubMed ID: 25377250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matching Protein Interfaces for Improved Medium-Chain Fatty Acid Production.
    Sarria S; Bartholow TG; Verga A; Burkart MD; Peralta-Yahya P
    ACS Synth Biol; 2018 May; 7(5):1179-1187. PubMed ID: 29722970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.