BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 26956898)

  • 1. Keratin 14 Expression in Epithelial Progenitor Cells of the Developing Human Cornea.
    Eghtedari Y; Richardson A; Mai K; Heng B; Guillemin GJ; Wakefield D; Di Girolamo N
    Stem Cells Dev; 2016 May; 25(9):699-711. PubMed ID: 26956898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem cell activity in the developing human cornea.
    Davies SB; Chui J; Madigan MC; Provis JM; Wakefield D; Di Girolamo N
    Stem Cells; 2009 Nov; 27(11):2781-92. PubMed ID: 19711455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of stem cell-related gene expression in the progenitor-rich limbal epithelium and the differentiating central corneal epithelium.
    Nieto-Miguel T; Calonge M; de la Mata A; López-Paniagua M; Galindo S; de la Paz MF; Corrales RM
    Mol Vis; 2011; 17():2102-17. PubMed ID: 21850186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of K14/K5 as a stem cell marker in the limbal region of the bovine cornea.
    Chen B; Mi S; Wright B; Connon CJ
    PLoS One; 2010 Oct; 5(10):e13192. PubMed ID: 20949137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sphere-forming cells from peripheral cornea demonstrate the ability to repopulate the ocular surface.
    Mathan JJ; Ismail S; McGhee JJ; McGhee CN; Sherwin T
    Stem Cell Res Ther; 2016 Jun; 7(1):81. PubMed ID: 27250558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keratin-14-Positive Precursor Cells Spawn a Population of Migratory Corneal Epithelia that Maintain Tissue Mass throughout Life.
    Richardson A; Lobo EP; Delic NC; Myerscough MR; Lyons JG; Wakefield D; Di Girolamo N
    Stem Cell Reports; 2017 Oct; 9(4):1081-1096. PubMed ID: 28943255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-cadherin in the maintenance of human corneal limbal epithelial progenitor cells in vitro.
    Higa K; Shimmura S; Miyashita H; Kato N; Ogawa Y; Kawakita T; Shimazaki J; Tsubota K
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4640-5. PubMed ID: 19420343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of stem cell properties in cell populations isolated from human central and limbal corneal epithelium.
    Chang CY; McGhee JJ; Green CR; Sherwin T
    Cornea; 2011 Oct; 30(10):1155-62. PubMed ID: 21849892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional reconstruction of rabbit corneal epithelium by human limbal cells cultured on amniotic membrane.
    Du Y; Chen J; Funderburgh JL; Zhu X; Li L
    Mol Vis; 2003 Dec; 9():635-43. PubMed ID: 14685149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the corneal surface in limbal stem cell deficiency and after transplantation of cultivated limbal epithelium.
    Pauklin M; Steuhl KP; Meller D
    Ophthalmology; 2009 Jun; 116(6):1048-56. PubMed ID: 19394701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence.
    Chang CY; Green CR; McGhee CN; Sherwin T
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5279-86. PubMed ID: 18515566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phenotype of limbal epithelial stem cells.
    Figueira EC; Di Girolamo N; Coroneo MT; Wakefield D
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):144-56. PubMed ID: 17197527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea.
    Ghoubay-Benallaoua D; de Sousa C; Martos R; Latour G; Schanne-Klein MC; Dupin E; Borderie V
    PLoS One; 2017; 12(11):e0188398. PubMed ID: 29149196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular Response of Limbal Stem Cells on Polycaprolactone Nanofibrous Scaffolds for Ocular Epithelial Regeneration.
    Baradaran-Rafii A; Biazar E; Heidari-keshel S
    Curr Eye Res; 2016; 41(3):326-33. PubMed ID: 25897888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of limbal stem cells.
    Schlötzer-Schrehardt U; Kruse FE
    Exp Eye Res; 2005 Sep; 81(3):247-64. PubMed ID: 16051216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of putative stem cell phenotype in human limbal epithelia.
    Chen Z; de Paiva CS; Luo L; Kretzer FL; Pflugfelder SC; Li DQ
    Stem Cells; 2004; 22(3):355-66. PubMed ID: 15153612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells.
    Saghizadeh M; Dib CM; Brunken WJ; Ljubimov AV
    Exp Eye Res; 2014 Dec; 129():66-73. PubMed ID: 25446319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytokeratin 15 can be used to identify the limbal phenotype in normal and diseased ocular surfaces.
    Yoshida S; Shimmura S; Kawakita T; Miyashita H; Den S; Shimazaki J; Tsubota K
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):4780-6. PubMed ID: 17065488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultivation and characterization of limbal epithelial stem cells on contact lenses with a feeder layer: toward the treatment of limbal stem cell deficiency.
    Gore A; Horwitz V; Gutman H; Tveria L; Cohen L; Cohen-Jacob O; Turetz J; McNutt PM; Dachir S; Kadar T
    Cornea; 2014 Jan; 33(1):65-71. PubMed ID: 24162749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells.
    Di Girolamo N
    Prog Retin Eye Res; 2015 Sep; 48():203-25. PubMed ID: 25916944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.