These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26956929)

  • 1. Shape Engineering of Oxide Nanoparticles for Heterogeneous Catalysis.
    Zhou Y; Li Y; Shen W
    Chem Asian J; 2016 May; 11(10):1470-88. PubMed ID: 26956929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the shape and crystal phase of TiO
    Zhao W; Li Y; Shen W
    Chem Commun (Camb); 2021 Jul; 57(56):6838-6850. PubMed ID: 34137748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles for heterogeneous catalysis: new mechanistic insights.
    Schauermann S; Nilius N; Shaikhutdinov S; Freund HJ
    Acc Chem Res; 2013 Aug; 46(8):1673-81. PubMed ID: 23252628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling Heterogeneous Catalysis with Organic Monolayers on Metal Oxides.
    Jenkins AH; Medlin JW
    Acc Chem Res; 2021 Nov; 54(21):4080-4090. PubMed ID: 34644060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology-dependent nanocatalysis: metal particles.
    Li Y; Liu Q; Shen W
    Dalton Trans; 2011 Jun; 40(22):5811-26. PubMed ID: 21373704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces.
    Pacchioni G
    Phys Chem Chem Phys; 2013 Feb; 15(6):1737-57. PubMed ID: 23287900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-atom catalysts: a new frontier in heterogeneous catalysis.
    Yang XF; Wang A; Qiao B; Li J; Liu J; Zhang T
    Acc Chem Res; 2013 Aug; 46(8):1740-8. PubMed ID: 23815772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model Approach in Heterogeneous Catalysis: Kinetics and Thermodynamics of Surface Reactions.
    Schauermann S; Freund HJ
    Acc Chem Res; 2015 Oct; 48(10):2775-82. PubMed ID: 26366783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.
    Song H
    Acc Chem Res; 2015 Mar; 48(3):491-9. PubMed ID: 25730414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counting electrons on supported nanoparticles.
    Lykhach Y; Kozlov SM; Skála T; Tovt A; Stetsovych V; Tsud N; Dvořák F; Johánek V; Neitzel A; Mysliveček J; Fabris S; Matolín V; Neyman KM; Libuda J
    Nat Mater; 2016 Mar; 15(3):284-8. PubMed ID: 26657332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology-dependent nanocatalysts: rod-shaped oxides.
    Li Y; Shen W
    Chem Soc Rev; 2014 Mar; 43(5):1543-74. PubMed ID: 24356335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic nanocatalysis: an accelerating seamless integration with nanotechnology.
    Dai Y; Wang Y; Liu B; Yang Y
    Small; 2015 Jan; 11(3):268-89. PubMed ID: 25363149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Oxide-Support Strong Interactions in the Graphdiyne-Supported Cuprous Oxide Nanocluster Catalyst.
    Yu J; Chen W; He F; Song W; Cao C
    J Am Chem Soc; 2023 Jan; 145(3):1803-1810. PubMed ID: 36638321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts.
    Matsubu JC; Zhang S; DeRita L; Marinkovic NS; Chen JG; Graham GW; Pan X; Christopher P
    Nat Chem; 2017 Feb; 9(2):120-127. PubMed ID: 28282057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.