BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26957000)

  • 21. Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features.
    Weng SL; Huang KY; Kaunang FJ; Huang CH; Kao HJ; Chang TH; Wang HY; Lu JJ; Lee TY
    BMC Bioinformatics; 2017 Mar; 18(Suppl 3):66. PubMed ID: 28361707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting RNA-binding sites of proteins using support vector machines and evolutionary information.
    Cheng CW; Su EC; Hwang JK; Sung TY; Hsu WL
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S6. PubMed ID: 19091029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites.
    Al-Barakati HJ; McConnell EW; Hicks LM; Poole LB; Newman RH; Kc DB
    Sci Rep; 2018 Jul; 8(1):11288. PubMed ID: 30050050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of S-nitrosylation sites based on multiple features combination.
    Li T; Song R; Yin Q; Gao M; Chen Y
    Sci Rep; 2019 Feb; 9(1):3098. PubMed ID: 30816267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formator: Predicting Lysine Formylation Sites Based on the Most Distant Undersampling and Safe-Level Synthetic Minority Oversampling.
    Jia C; Zhang M; Fan C; Li F; Song J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1937-1945. PubMed ID: 31804942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EvolStruct-Phogly: incorporating structural properties and evolutionary information from profile bigrams for the phosphoglycerylation prediction.
    Chandra AA; Sharma A; Dehzangi A; Tsunoda T
    BMC Genomics; 2019 Apr; 19(Suppl 9):984. PubMed ID: 30999859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HydPred: a novel method for the identification of protein hydroxylation sites that reveals new insights into human inherited disease.
    Li S; Lu J; Li J; Chen X; Yao X; Xi L
    Mol Biosyst; 2016 Feb; 12(2):490-8. PubMed ID: 26661679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of protein homo-oligomer types by pseudo amino acid composition: Approached with an improved feature extraction and Naive Bayes Feature Fusion.
    Zhang SW; Pan Q; Zhang HC; Shao ZC; Shi JY
    Amino Acids; 2006 Jun; 30(4):461-8. PubMed ID: 16773245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glypre: In Silico Prediction of Protein Glycation Sites by Fusing Multiple Features and Support Vector Machine.
    Zhao X; Zhao X; Bao L; Zhang Y; Dai J; Yin M
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29099805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information.
    Hasan MM; Guo D; Kurata H
    Mol Biosyst; 2017 Nov; 13(12):2545-2550. PubMed ID: 28990628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information.
    An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF
    Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.
    Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids.
    Xu Y; Ding J; Wu LY
    PLoS One; 2016; 11(4):e0154237. PubMed ID: 27104833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition.
    Xu Y; Wen X; Shao XJ; Deng NY; Chou KC
    Int J Mol Sci; 2014 May; 15(5):7594-610. PubMed ID: 24857907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identify Lysine Neddylation Sites Using Bi-profile Bayes Feature Extraction
    Ju Z; Wang SY
    Curr Genomics; 2019 Dec; 20(8):592-601. PubMed ID: 32581647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bigram-PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix.
    Chandra A; Sharma A; Dehzangi A; Shigemizu D; Tsunoda T
    BMC Mol Cell Biol; 2019 Dec; 20(Suppl 2):57. PubMed ID: 31856704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs.
    Bui VM; Lu CT; Ho TT; Lee TY
    Bioinformatics; 2016 Jan; 32(2):165-72. PubMed ID: 26411868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2016 May; 397():145-50. PubMed ID: 26908349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction.
    Dehzangi A; López Y; Lal SP; Taherzadeh G; Michaelson J; Sattar A; Tsunoda T; Sharma A
    J Theor Biol; 2017 Jul; 425():97-102. PubMed ID: 28483566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.