BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 26957010)

  • 1. Review: Opportunities and challenges for small populations of dairy cattle in the era of genomics.
    Schöpke K; Swalve HH
    Animal; 2016 Jun; 10(6):1050-60. PubMed ID: 26957010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population.
    Hozé C; Fritz S; Phocas F; Boichard D; Ducrocq V; Croiseau P
    J Dairy Sci; 2014; 97(6):3918-29. PubMed ID: 24704232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: How to improve genomic predictions in small dairy cattle populations.
    Lund MS; van den Berg I; Ma P; Brøndum RF; Su G
    Animal; 2016 Jun; 10(6):1042-9. PubMed ID: 26781646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extent of linkage disequilibrium, consistency of gametic phase, and imputation accuracy within and across Canadian dairy breeds.
    Larmer SG; Sargolzaei M; Schenkel FS
    J Dairy Sci; 2014 May; 97(5):3128-41. PubMed ID: 24582440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotyping more cows increases genetic gain and reduces rate of true inbreeding in a dairy cattle breeding scheme using female reproductive technologies.
    Thomasen JR; Liu H; Sørensen AC
    J Dairy Sci; 2020 Jan; 103(1):597-606. PubMed ID: 31733861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels.
    Erbe M; Hayes BJ; Matukumalli LK; Goswami S; Bowman PJ; Reich CM; Mason BA; Goddard ME
    J Dairy Sci; 2012 Jul; 95(7):4114-29. PubMed ID: 22720968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for implementing genomic selection for feed efficiency in dairy cattle breeding schemes.
    Wallén SE; Lillehammer M; Meuwissen THE
    J Dairy Sci; 2017 Aug; 100(8):6327-6336. PubMed ID: 28601446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic predictions based on a joint reference population for the Nordic Red cattle breeds.
    Zhou L; Heringstad B; Su G; Guldbrandtsen B; Meuwissen TH; Svendsen M; Grove H; Nielsen US; Lund MS
    J Dairy Sci; 2014 Jul; 97(7):4485-96. PubMed ID: 24792791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sharing reference data and including cows in the reference population improve genomic predictions in Danish Jersey.
    Su G; Ma P; Nielsen US; Aamand GP; Wiggans G; Guldbrandtsen B; Lund MS
    Animal; 2016 Jun; 10(6):1067-75. PubMed ID: 26330119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adding cows to the reference population makes a small dairy population competitive.
    Thomasen JR; Sørensen AC; Lund MS; Guldbrandtsen B
    J Dairy Sci; 2014 Sep; 97(9):5822-32. PubMed ID: 24996280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using genomics to enhance selection of novel traits in North American dairy cattle.
    Chesnais JP; Cooper TA; Wiggans GR; Sargolzaei M; Pryce JE; Miglior F
    J Dairy Sci; 2016 Mar; 99(3):2413-2427. PubMed ID: 26778318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the effect of reference population on the accuracy of within, across, and multibreed genomic prediction.
    van den Berg I; Meuwissen THE; MacLeod IM; Goddard ME
    J Dairy Sci; 2019 Apr; 102(4):3155-3174. PubMed ID: 30738664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imputation of genotypes from low density (50,000 markers) to high density (700,000 markers) of cows from research herds in Europe, North America, and Australasia using 2 reference populations.
    Pryce JE; Johnston J; Hayes BJ; Sahana G; Weigel KA; McParland S; Spurlock D; Krattenmacher N; Spelman RJ; Wall E; Calus MP
    J Dairy Sci; 2014 Mar; 97(3):1799-811. PubMed ID: 24472132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards multi-breed genomic evaluations for female fertility of tropical beef cattle.
    Hayes BJ; Corbet NJ; Allen JM; Laing AR; Fordyce G; Lyons R; McGowan MR; Burns BM
    J Anim Sci; 2019 Jan; 97(1):55-62. PubMed ID: 30371787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of predicting genomic breeding values for residual feed intake in Angus and Charolais beef cattle.
    Chen L; Schenkel F; Vinsky M; Crews DH; Li C
    J Anim Sci; 2013 Oct; 91(10):4669-78. PubMed ID: 24078618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic selection strategies in a small dairy cattle population evaluated for genetic gain and profit.
    Thomasen JR; Egger-Danner C; Willam A; Guldbrandtsen B; Lund MS; Sørensen AC
    J Dairy Sci; 2014; 97(1):458-70. PubMed ID: 24239076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic predictions for crossbred dairy cattle.
    VanRaden PM; Tooker ME; Chud TCS; Norman HD; Megonigal JH; Haagen IW; Wiggans GR
    J Dairy Sci; 2020 Feb; 103(2):1620-1631. PubMed ID: 31837783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-supervised learning for genomic prediction of novel traits with small reference populations: an application to residual feed intake in dairy cattle.
    Yao C; Zhu X; Weigel KA
    Genet Sel Evol; 2016 Nov; 48(1):84. PubMed ID: 27821057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A first step toward genomic selection in the multi-breed French dairy goat population.
    Carillier C; Larroque H; Palhière I; Clément V; Rupp R; Robert-Granié C
    J Dairy Sci; 2013; 96(11):7294-7305. PubMed ID: 24054303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of training strategies on the accuracy of genomic predictors in United States Red Angus cattle.
    Lee J; Kachman SD; Spangler ML
    J Anim Sci; 2017 Aug; 95(8):3406-3414. PubMed ID: 28805929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.