These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 26957157)

  • 1. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel.
    Rebolini E; Toulouse J
    J Chem Phys; 2016 Mar; 144(9):094107. PubMed ID: 26957157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical second-order Bethe-Salpeter equation kernel: a method for electronic excitation beyond the adiabatic approximation.
    Zhang D; Steinmann SN; Yang W
    J Chem Phys; 2013 Oct; 139(15):154109. PubMed ID: 24160502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double excitations in finite systems.
    Romaniello P; Sangalli D; Berger JA; Sottile F; Molinari LG; Reining L; Onida G
    J Chem Phys; 2009 Jan; 130(4):044108. PubMed ID: 19191378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical correction to the Bethe-Salpeter equation beyond the plasmon-pole approximation.
    Loos PF; Blase X
    J Chem Phys; 2020 Sep; 153(11):114120. PubMed ID: 32962392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication: A hybrid Bethe-Salpeter/time-dependent density-functional-theory approach for excitation energies.
    Holzer C; Klopper W
    J Chem Phys; 2018 Sep; 149(10):101101. PubMed ID: 30219024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of range-separated time-dependent density-functional theory for calculating C6 dispersion coefficients.
    Toulouse J; Rebolini E; Gould T; Dobson JF; Seal P; Ángyán JG
    J Chem Phys; 2013 May; 138(19):194106. PubMed ID: 23697408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation.
    Isegawa M; Truhlar DG
    J Chem Phys; 2013 Apr; 138(13):134111. PubMed ID: 23574212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static correlation beyond the random phase approximation: dissociating H2 with the Bethe-Salpeter equation and time-dependent GW.
    Olsen T; Thygesen KS
    J Chem Phys; 2014 Apr; 140(16):164116. PubMed ID: 24784262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab Initio Optoelectronic Properties of Silicon Nanoparticles: Excitation Energies, Sum Rules, and Tamm-Dancoff Approximation.
    Rocca D; Vörös M; Gali A; Galli G
    J Chem Theory Comput; 2014 Aug; 10(8):3290-8. PubMed ID: 26588298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach and the Tamm-Dancoff approximation.
    Rangel T; Hamed SM; Bruneval F; Neaton JB
    J Chem Phys; 2017 May; 146(19):194108. PubMed ID: 28527441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange.
    Heßelmann A
    J Chem Theory Comput; 2015 Apr; 11(4):1607-20. PubMed ID: 26574370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double excitation effect in non-adiabatic time-dependent density functional theory with an analytic construction of the exchange-correlation kernel in the common energy denominator approximation.
    Gritsenko OV; Baerends EJ
    Phys Chem Chem Phys; 2009 Jun; 11(22):4640-6. PubMed ID: 19475185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green's function formalisms.
    Faber C; Boulanger P; Attaccalite C; Duchemin I; Blase X
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20130271. PubMed ID: 24516185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe-Salpeter Formalism.
    Gui X; Holzer C; Klopper W
    J Chem Theory Comput; 2018 Apr; 14(4):2127-2136. PubMed ID: 29499116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies.
    Li J; Jin Y; Su NQ; Yang W
    J Chem Phys; 2022 Apr; 156(15):154101. PubMed ID: 35459294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-order derivative couplings between excited states from adiabatic TDDFT response theory.
    Ou Q; Bellchambers GD; Furche F; Subotnik JE
    J Chem Phys; 2015 Feb; 142(6):064114. PubMed ID: 25681894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Renormalized Singles
    Li J; Golze D; Yang W
    J Chem Theory Comput; 2022 Nov; 18(11):6637-6645. PubMed ID: 36279250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact-exchange kernel of time-dependent density functional theory: frequency dependence and photoabsorption spectra of atoms.
    Hellgren M; von Barth U
    J Chem Phys; 2009 Jul; 131(4):044110. PubMed ID: 19655840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation energies from range-separated time-dependent density and density matrix functional theory.
    Pernal K
    J Chem Phys; 2012 May; 136(18):184105. PubMed ID: 22583275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.