These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26957177)

  • 1. Phase diagrams of charged colloidal rods: Can a uniaxial charge distribution break chiral symmetry?
    Drwenski T; Dussi S; Hermes M; Dijkstra M; van Roij R
    J Chem Phys; 2016 Mar; 144(9):094901. PubMed ID: 26957177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biaxial versus uniaxial nematic stability in asymmetric rod-plate mixtures.
    Wensink HH; Vroege GJ; Lekkerkerker HN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041704. PubMed ID: 12443220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nematic phase transitions in mixtures of thin and thick colloidal rods.
    Purdy KR; Varga S; Galindo A; Jackson G; Fraden S
    Phys Rev Lett; 2005 Feb; 94(5):057801. PubMed ID: 15783700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biaxial nematic phase stability and demixing behaviour in monolayers of rod-plate mixtures.
    Martínez-Ratón Y; González-Pinto M; Velasco E
    Phys Chem Chem Phys; 2016 Sep; 18(35):24569-81. PubMed ID: 27539250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of the isotropic-nematic transition in dispersions of compressible rods.
    Shundyak K; van Roij R; van der Schoot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021710. PubMed ID: 17025455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frank elasticity of composite colloidal nematics with anti-nematic order.
    Wensink HH
    Soft Matter; 2018 Nov; 14(44):8935-8944. PubMed ID: 30379187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Parsons-Lee and Onsager theories to predict nematic and demixing behavior in binary mixtures of hard rods and hard spheres.
    Cuetos A; Martínez-Haya B; Lago S; Rull LF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061701. PubMed ID: 17677277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants.
    Adlem K; Čopič M; Luckhurst GR; Mertelj A; Parri O; Richardson RM; Snow BD; Timimi BA; Tuffin RP; Wilkes D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022503. PubMed ID: 24032852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotropic-to-cholesteric transition in liquid crystal elastomers.
    Warner M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 1):011701. PubMed ID: 12636511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic moduli of a smectic membrane: a rod-level scaling analysis.
    Wensink HH; Morales Anda L
    J Phys Condens Matter; 2018 Feb; 30(7):075101. PubMed ID: 29313832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Twist, tilt, and orientational order at the nematic to twist-bend nematic phase transition of 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane: A dielectric, (2)H NMR, and calorimetric study.
    Robles-Hernández B; Sebastián N; de la Fuente MR; López DO; Diez-Berart S; Salud J; Ros MB; Dunmur DA; Luckhurst GR; Timimi BA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062505. PubMed ID: 26764709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotropic-cholesteric transition of a weakly chiral elastomer cylinder.
    Xing X; Baskaran A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021709. PubMed ID: 18850854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Landau-de Gennes theory for twist-bend and splay-bend nematic phases of colloidal suspensions of bent rods.
    Anzivino C; van Roij R; Dijkstra M
    J Chem Phys; 2020 Jun; 152(22):224502. PubMed ID: 32534541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular theory of nematic-nematic phase transitions in mesogenic dimers.
    Vanakaras AG; Photinos DJ
    Soft Matter; 2016 Feb; 12(7):2208-20. PubMed ID: 26766148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isotropic-nematic phase transition of nonaqueous suspensions of natural clay rods.
    Zhang ZX; van Duijneveldt JS
    J Chem Phys; 2006 Apr; 124(15):154910. PubMed ID: 16674268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic continuum theory: towards understanding of the twist-bend nematic phases.
    Barbero G; Evangelista LR; Rosseto MP; Zola RS; Lelidis I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):030501. PubMed ID: 26465409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotropic-cholesteric phase transition of filamentous virus suspensions as a function of rod length and charge.
    Purdy KR; Fraden S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061703. PubMed ID: 15697386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally reconfigurable monoclinic nematic colloidal fluids.
    Mundoor H; Wu JS; Wensink HH; Smalyukh II
    Nature; 2021 Feb; 590(7845):268-274. PubMed ID: 33568825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binary System Exhibiting the Nematic to Twist-Bend Nematic Transition: Behavior of Permittivity and Elastic Constants.
    Parthasarathi S; Rao DS; Palakurthy NB; Yelamaggad CV; Krishna Prasad S
    J Phys Chem B; 2016 Jun; 120(22):5056-62. PubMed ID: 27181926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase separations in liquid crystal-colloid mixtures.
    Matsuyama A; Hirashima R
    J Chem Phys; 2008 Jan; 128(4):044907. PubMed ID: 18248000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.