These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 26958074)
1. Burst nucleation by hot injection for size controlled synthesis of ε-cobalt nanoparticles. Zacharaki E; Kalyva M; Fjellvåg H; Sjåstad AO Chem Cent J; 2016; 10():10. PubMed ID: 26958074 [TBL] [Abstract][Full Text] [Related]
2. Aerosol classification by dielectrophoresis: a theoretical study on spherical particles. Lorenz M; Weber AP; Baune M; Thöming J; Pesch GR Sci Rep; 2020 Jun; 10(1):10617. PubMed ID: 32606445 [TBL] [Abstract][Full Text] [Related]
3. Scrutinizing the role of size reduction on the exchange bias and dynamic magnetic behavior in NiO nanoparticles. Rinaldi-Montes N; Gorria P; Martínez-Blanco D; Fuertes AB; Barquín LF; Puente-Orench I; Blanco JA Nanotechnology; 2015 Jul; 26(30):305705. PubMed ID: 26159463 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Kim D; Jeong S; Moon J Nanotechnology; 2006 Aug; 17(16):4019-24. PubMed ID: 21727531 [TBL] [Abstract][Full Text] [Related]
5. Calixarene-Mediated Synthesis of Cobalt Nanoparticles: An Accretion Model for Separate Control over Nucleation and Growth. Chen Z; Liu J; Evans AJ; Alberch L; Wei A Chem Mater; 2014; 26(2):941-950. PubMed ID: 25960603 [TBL] [Abstract][Full Text] [Related]
6. Non-monotonic size change of monodisperse Fe₃O₄ nanoparticles in the scale-up synthesis. Song NN; Yang HT; Ren X; Li ZA; Luo Y; Shen J; Dai W; Zhang XQ; Cheng ZH Nanoscale; 2013 Apr; 5(7):2804-10. PubMed ID: 23440069 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Hufschmid R; Arami H; Ferguson RM; Gonzales M; Teeman E; Brush LN; Browning ND; Krishnan KM Nanoscale; 2015 Jul; 7(25):11142-54. PubMed ID: 26059262 [TBL] [Abstract][Full Text] [Related]
8. Growth mechanisms and size control of FePt nanoparticles synthesized using Fe(CO)x (x < 5)-oleylamine and platinum(ii) acetylacetonate. Bian B; Xia W; Du J; Zhang J; Liu JP; Guo Z; Yan A Nanoscale; 2013 Mar; 5(6):2454-9. PubMed ID: 23403464 [TBL] [Abstract][Full Text] [Related]
9. Synergetic effect of size and morphology of cobalt ferrite nanoparticles on proton relaxivity. N V; Srivastava C; Hegde V IET Nanobiotechnol; 2014 Dec; 8(4):184-9. PubMed ID: 25429495 [TBL] [Abstract][Full Text] [Related]
10. Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy. Herranz T; Deng X; Cabot A; Guo J; Salmeron M J Phys Chem B; 2009 Aug; 113(31):10721-7. PubMed ID: 19601588 [TBL] [Abstract][Full Text] [Related]
11. Absorption cross section of gold nanoparticles based on NIR laser heating and thermodynamic calculations. Alrahili M; Savchuk V; McNear K; Pinchuk A Sci Rep; 2020 Nov; 10(1):18790. PubMed ID: 33139828 [TBL] [Abstract][Full Text] [Related]
12. Influence of the colloidal environment on the magnetic behavior of cobalt nanoparticles. Cheng G; Dennis CL; Shull RD; Walker AR Langmuir; 2007 Nov; 23(23):11740-6. PubMed ID: 17924670 [TBL] [Abstract][Full Text] [Related]
13. Surfactant-Free, Size-Controllable, and Scalable Green Synthesis of ZIF-8 Particles with Narrow Size Distribution by Tuning Key Reaction Parameters in Water Solvent. Kim D; Park J; Park J; Jang J; Han M; Lim SH; Ryu DY; You J; Zhu W; Yamauchi Y; Kim J Small Methods; 2024 May; ():e2400236. PubMed ID: 38697925 [TBL] [Abstract][Full Text] [Related]
14. Analysis of deviation from classical [Formula: see text]-law for biochar conversion in an oxygen-enriched and temperature-controlled environment. Asheruddin NM; Shivapuji AM; Dasappa S Sci Rep; 2022 Nov; 12(1):18391. PubMed ID: 36319687 [TBL] [Abstract][Full Text] [Related]
15. Chelation, formulation, encapsulation, retention, and in vivo biodistribution of hydrophobic nanoparticles labelled with Hervella P; Dam JH; Thisgaard H; Baun C; Olsen BB; Høilund-Carlsen PF; Needham D J Control Release; 2018 Dec; 291():11-25. PubMed ID: 30291986 [TBL] [Abstract][Full Text] [Related]
16. Acoustic probing of the particle concentration in turbulent granular suspensions in air. van den Wildenberg S; Jia X; Roche O Sci Rep; 2020 Oct; 10(1):16544. PubMed ID: 33024148 [TBL] [Abstract][Full Text] [Related]
17. Inversion of thermodiffusive properties of ionic colloidal dispersions in water-DMSO mixtures probed by forced Rayleigh scattering. Sarkar M; Riedl JC; Demouchy G; Gélébart F; Mériguet G; Peyre V; Dubois E; Perzynski R Eur Phys J E Soft Matter; 2019 Jun; 42(6):72. PubMed ID: 31177408 [TBL] [Abstract][Full Text] [Related]
18. Poly(3-hydroxybutyrate-co-epsilon-caprolactone) copolymers and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-epsilon-caprolactone) terpolymers as novel materials for colloidal drug delivery systems. Pignatello R; Musumeci T; Impallomeni G; Carnemolla GM; Puglisi G; Ballistreri A Eur J Pharm Sci; 2009 Jun; 37(3-4):451-62. PubMed ID: 19504659 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Lu le T; Dung NT; Tung le D; Thanh CT; Quy OK; Chuc NV; Maenosono S; Thanh NT Nanoscale; 2015 Dec; 7(46):19596-610. PubMed ID: 26542630 [TBL] [Abstract][Full Text] [Related]
20. Localization model description of the interfacial dynamics of crystalline Cu and [Formula: see text] metallic glass nanoparticles. Mahmud G; Zhang H; Douglas JF Eur Phys J E Soft Matter; 2021 Mar; 44(3):33. PubMed ID: 33728521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]