These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26958074)

  • 21. Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering.
    Lassenberger A; Grünewald TA; van Oostrum PDJ; Rennhofer H; Amenitsch H; Zirbs R; Lichtenegger HC; Reimhult E
    Chem Mater; 2017 May; 29(10):4511-4522. PubMed ID: 28572705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size control of metal nanoparticle catalysts for the gas-phase synthesis of single-walled carbon nanotubes.
    Saito T; Ohshima S; Xu WC; Ago H; Yumura M; Iijima S
    J Phys Chem B; 2005 Jun; 109(21):10647-52. PubMed ID: 16852292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A surfactant-free microemulsion consisting of water, ethanol, and dichloromethane and its template effect for silica synthesis.
    Sun B; Chai J; Chai Z; Zhang X; Cui X; Lu J
    J Colloid Interface Sci; 2018 Sep; 526():9-17. PubMed ID: 29715616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Equation of state for He bubbles in W and model of He bubble growth and bursting near W{100} surfaces derived from molecular dynamics simulations.
    Setyawan W; Dasgupta D; Blondel S; Nandipati G; Hammond KD; Maroudas D; Wirth BD
    Sci Rep; 2023 Jun; 13(1):9601. PubMed ID: 37311783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The critical role of surfactants in the growth of cobalt nanoparticles.
    Bao Y; An W; Turner CH; Krishnan KM
    Langmuir; 2010 Jan; 26(1):478-83. PubMed ID: 19743830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic, structural and cation distribution studies on [Formula: see text] (x = 0.00, 0.02, 0.04, 0.06 and 0.1) nanoparticles.
    Araujo WWR; Araujo JFDF; Oliveira CLP; Brito GES; Figueiredo Neto AM
    Eur Phys J E Soft Matter; 2019 Dec; 42(12):153. PubMed ID: 31802279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-Pot Seed-Mediated Growth of Co Nanoparticles by the Polyol Process: Unraveling the Heterogeneous Nucleation.
    Ramamoorthy RK; Viola A; Grindi B; Peron J; Gatel C; Hytch M; Arenal R; Sicard L; Giraud M; Piquemal JY; Viau G
    Nano Lett; 2019 Dec; 19(12):9160-9169. PubMed ID: 31756108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of the morphology and particle size of boehmite nanoparticles synthesized under hydrothermal conditions.
    Mathieu Y; Lebeau B; Valtchev V
    Langmuir; 2007 Aug; 23(18):9435-42. PubMed ID: 17676774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling nucleation and growth of nano-CaCO
    Palmqvist NGM; Nedelec JM; Seisenbaeva GA; Kessler VG
    Acta Biomater; 2017 Jul; 57():426-434. PubMed ID: 28483694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of particle diameter and magnetocrystalline anisotropy on magnetic relaxation and magnetic particle imaging performance of magnetic nanoparticles.
    Zhao Z; Garraud N; Arnold DP; Rinaldi C
    Phys Med Biol; 2020 Jan; 65(2):025014. PubMed ID: 31766030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective Synthesis of Monodisperse CoO Nanooctahedra as Catalysts for Electrochemical Water Oxidation.
    Sarif M; Hilgert J; Khan I; Harris RA; Plana-Ruiz S; Ashraf M; Pütz E; Schemberg J; Panthöfer M; Kolb U; Nawaz Tahir M; Tremel W
    Langmuir; 2020 Nov; 36(46):13804-13816. PubMed ID: 33171051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water Pollutants p-Cresol Detection Based on Au-ZnO Nanoparticles Modified Tapered Optical Fiber.
    Wang Y; Zhu G; Li M; Singh R; Marques C; Min R; Kaushik BK; Zhang B; Jha R; Kumar S
    IEEE Trans Nanobioscience; 2021 Jul; 20(3):377-384. PubMed ID: 34018936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy.
    Pacakova B; Mantlikova A; Niznansky D; Kubickova S; Vejpravova J
    J Phys Condens Matter; 2016 May; 28(20):206004. PubMed ID: 27122013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From Colloidal Monodisperse Nickel Nanoparticles to Well-Defined Ni/Al
    Zacharaki E; Beato P; Tiruvalam RR; Andersson KJ; Fjellvåg H; Sjåstad AO
    Langmuir; 2017 Sep; 33(38):9836-9843. PubMed ID: 28832150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magneto-plasmonic Au-Coated Co nanoparticles synthesized via hot-injection method.
    Souza JB; Varanda LC
    Nanotechnology; 2018 Feb; 29(6):065604. PubMed ID: 29226846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards the prediction of flow-induced shear stress distributions experienced by breast cancer cells in the lymphatics.
    Morley ST; Newport DT; Walsh MT
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2051-2062. PubMed ID: 28741084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and size control of monodisperse copper nanoparticles by polyol method.
    Park BK; Jeong S; Kim D; Moon J; Lim S; Kim JS
    J Colloid Interface Sci; 2007 Jul; 311(2):417-24. PubMed ID: 17448490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple procedure for the production of large ferromagnetic cobalt nanoparticles.
    Fuller RO; Goh BM; Koutsantonis GA; Loedolff MJ; Saunders M; Woodward RC
    Dalton Trans; 2016 Jul; 45(30):11983-9. PubMed ID: 27385657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two Birds with One Stone: Spontaneous Size Separation and Growth Inhibition of Femtosecond Laser-Generated Surfactant-Free Metallic Nanoparticles via ex Situ SU-8 Functionalization.
    Zhang D; Choi W; Yazawa K; Numata K; Tateishi A; Cho SH; Lin HP; Li YK; Ito Y; Sugioka K
    ACS Omega; 2018 Sep; 3(9):10953-10966. PubMed ID: 31459206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Syntheses and characterization of nearly monodispersed, size-tunable silver nanoparticles over a wide size range of 7-200 nm by tannic acid reduction.
    Cao Y; Zheng R; Ji X; Liu H; Xie R; Yang W
    Langmuir; 2014 Apr; 30(13):3876-82. PubMed ID: 24628127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.